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Imaging is a Growing Part of the ORNL
Neuiron Sciences Program

High Flux Isotope Reactor (HFIR)
Intense steady-state neutron flux
and a high-brightness cold neutron source

SpallationM€utron Source (SNS)
g”most powerful accelerator-based neutro

Techniques such as Bragg-edge imaging were
implemented on BL3 SNAP diffractometer
( is under construction)

Dedicated Imaging Instrument (
Steadily improving capabilities
Expanded support

Future beamline at STS (Bragg
edge and grating interferometry)
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Neutron imaging has a broad scientific portftolio

Soft Matter and Materials for

Polymers, 3% infrastructure, 3% Materials
degradation, 3%

Composites, 3% v Studies “real

Materials science - Biomass and world"” systems
General, 17% blotuels. 3¢
Porous media, 6% v Structural
— measurements
_ Nuclear materials, v Real-time in situ
Energy materials , 6% functioning of
117% systems
Medical v' Software essential
applications, 67 to successful
experiment
Industrial
Phase Life applications , 6% v Advances in

transformations/kinetics, Fluids , 9% science

, 9% Earth and
environmental

Machine Learning

science, 6%
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The Spallation Neutron Source layout
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Imaging at a pulsed source (SNS)

Energy-dependent

Detector radiographs
Hg Neutron pulse \ , !
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Proton L
pulse Moderc’ror
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Higher energy neutrons can also be used for imaging (neutrons
of energies higher than 1 eV): Resonance Imaging
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Zhang Y., Myhre K.G., Bilheux H.Z., Tremsin A.S., Johnson J.A., Bilheux J., Miskowiec
A., Hunt R.D., Santodonato L., Molaison J.J., "Neutron Resonance Radiography

and Application to Nuclear Fuel Materials", Transactions of the American Nuclear
Society, (2018).
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http://answinter.org/wp-content/2018/data/pdfs/287-26287.pdf
http://answinter.org/wp-content/2018/data/pdfs/287-26287.pdf

Scientific applications that benefit from resonance
Imaging

O

* Soil surveys, confaminants in soil, efc.: revions o=y | Overal
— transmission through 0.01 mm thickness of "eiCo (between 1 and 5 A) =99.5 % hrough beam
— tfransmission through 1 mm thickness of "oiZn (between 1 and 5 A) = 96.4 %

v
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Simulated resonance for elements of interest(*)
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Scientific applications that benefit from resonance
Imaging(cont’d)

« Hg contamination in saoll
— Assumptions: 0.1 mm Hg (13.6 g/cm?3) + 12.5 mm SiC (with 1.5 g/cm?3)
e Transmission (1 and 5 A) = 66.4 %

05- : Resonance peaks plotted
with:

INEUIT (*/ knew it”)

Attenuation

iN EUtron |maging Toolbox
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Using epithermal neutrons (energy > 1 eV), resonance
Imaging can map the isotopic conftent in advanced
nuclear fuel materials in 3D

» Distribution of elements drive the performance of the novel advanced
nuclear fuel materials
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* * L o o o o [Illlll]
> Quantitative analysis is being developed using in-house open-source .
Python package (ResofFit)
Myhre K.G., Zhang Y., Bilheux H.Z,, Johnson J.A,, Bilheux J., Miskowiec A., Hunt R.D,, 0
%OAK RIDGE | gratiation £27= "Nondestructive Tomographic Mapping of Uranium and Gadolinium Using Energy-Resolved
National Laboratory | SOURCE ‘ = ’ Neutron Imaging", Transactions of the American Nuclear Society, (2018).



http://answinter.org/wp-content/2018/data/pdfs/264-26727.pdf
http://answinter.org/wp-content/2018/data/pdfs/264-26727.pdf
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Bragg edge iImaging: how does it worke I(A) = I (A)e O
Different Bragg edges

measure different phases ,oN
and lattice spacings, d,,;

The height of Bragg edge
provides the amount of a
specific phase.

Neutron
Transmission

Barton J.P, Bilheux H.Z,, Bossi R,
Herwig K.W., Santodonato L.,
Taylor M., "Chapter 12: Neutron
Radiography for Nondestructive
Testing", Nondestructive Testing
Handbook, Fourth Edition: Volume
3, Radiographic Testing

(RT) (2019).

»

3D printed Neutron Wavelength Ari
Inconel 718 Rodlogroph The position of the Bragg edge, A, = 2 dy,
YOAK RIDGE g (T} 4 » | atHFIR is a measure of the strain in the sample

1 cm S —


https://www.asnt.org/Store/ProductDetail?productKey=78f4798c-cfb2-44df-92dc-1c0e97b106ca
https://www.asnt.org/Store/ProductDetail?productKey=78f4798c-cfb2-44df-92dc-1c0e97b106ca
https://www.asnt.org/Store/ProductDetail?productKey=78f4798c-cfb2-44df-92dc-1c0e97b106ca

Principle of Bragg edge Transmission

v Utilizes thermal and cold neutrons (approximately between 1 and 10 A)
v Obeys Bragg's Law A, = 2d,,, sin B, simplifies: A, = 2d

March-Dollase Sabine’s primary

model extinction model p,: volume of unit cell
A2 2dpg>A o SnmmpmEmmnmrpemassnsssnnnnnn, F,.: Structure factor including Debye-
hkl
UBragg(/l) = _ZV z |Fhkl| dhkl P (/1)) Enki(4, Fhkl) Waller factor
(AT N WL S R
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The perfect case study: powders
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http://dx.doi.org/10.3390/jimaging3040065
http://dx.doi.org/10.3390/jimaging3040065

Materials Behavior: Monitoring residual strain relaxation and
preferred grain orientation of additively manutfactured Inconel
625 by in-situ neutron imaging

Sample thickness
6.55mm
25.40 mm
Fig. 1. (a) Sample demgn, (b) numbermg and (e) the printed sample distnbution on the bmld plate.
Tremsin et al, Additive Manufacturing, 2021. Arc of Triumph, Paris.
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Fig. 8. Stramn distmbubon (1n mocrostramm) at the (111) Brags edee meazured at room temperature along the sample thackness direchion X. SNAP beambine. The image
intesration time was about 2 h at SNAP. i, value i taken from the annealed sample #]1-8 (average across the entire sample). The lesend indicates the strain values in
microstrain.
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Engineered Materials: Monitoring residual strain relaxation and
preferred grain orientation of additively manutfactured Inconel
625 by in-situ neutron iImaging (10 min measurements)
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Tremsin et al, Nuc. Instr. Methods in Phys. Res. A, 2021.
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Experiment planning tools: NEUIT (NEUtron Imaging Toolbox)

€ 5 C O & neuitomlgoy b ox oo B % O ° AVO”Oble -I-OO|S:

3% Dropbox i NIT % Neutron Imaging :... @ Google Dashboard ~ *® Launch Session CG1D Monitor » | [} Other bookmarks

iN E U tron | maging Toolbox Select a Tool >
Introduction Neut R
Here we present a toolbox to provide interactive and user-friendly applications that can be used for Neutron Imaging related eutron resonance

calculations. -
Composition Converter

S Select a Tool ¥

Neutron Transmission

etc, using Dash framework.

Time-of-flight Plotter

Detailed functionality description is available inside each application.

Disclaimer Bragg-edge Simulator
The energy dependent cross-section data used are from National Nuclear Data Center, a published online database. Evaluated
Nuclear Data File, ENDF/B-VIIL.O and ENDF/B-VII.1 are currently supported. More evaluated database will be added in the future. GOIden Aﬂg|€5

Please note that the energy dependent cross-section of hydrogen in ENDF/B database is for a free H atom. When interacting with
slow neutrons in the cold range, the cross-section of a bonded H could be underestimated when using this tool. In a recent
update to support [magingReso (v1.7.4), some experimentally measured cross-sections (refl and ref2) of a bonded H are now
available,

Cite this work
1.Yuxuan Zhang, Jean Bilheux, Hassina Bilheux and Jiao Lin, (2019) "An interactive web-based tool to guide the preparation of PY N | d -I- b -I- d
neutron imaging_experiments at oak ridge national laboratory”, Journal of Physics Communications, 3(10), 103003. U C e O r O O O S e S U p p O r e

2.Yuxuan Zhang and Jean Bilheux, (2017), "|magingReso: A Tool for Neutron Resonance Imaging”, Journal of Open Source Software,

2(19), 407. - ENDF/B_\/”'.O (BNL)

Contact us

— ENDF/B-VII.1 (BNL)

Jean Bilheux -- bilheuxjim@ornl.gov
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We use Jupyter python notebooks developed
to process/analyze data

Scientific Achievement

Users can easily match metadata recorded with their own hardware to the corresponding image file.

Create and Export ASCII File

Create lookup table of
Filename vs archived metadata

Select your IPTS

Select Image Folder

,_£ile_time_stamp = CreateListFileName(vorking dir-systen.System.got_wo:
£l tine stamp.select isage. folder()

Select Output Folder

o_file_tino_stamp.select export. mr

Create lookup fable

filename vs ti

Create lookup table of
Metadata vs timestamp

OAK RIDGE

National Laboratory
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Extrapolate and Display Results

Select Output Folder

next_tunction=o_matcher .o

Extrapolate and display results

Significance and Impact

- In any experiments, parameters are modified, monitor and
recorded. Those metadata are sometimes store with the image
file, archived or just saved in an external text file. This notebook
allows to bring all those metadata into a single place in order to
match them with the right file.

Research Details

— Afirst notebook create a lookup table of file name vs time stamp.
According to the location of the metadata, another notebook is
ran to create this time a lookup table of metadata vs time stamp.
This 3™ notebook, presented here, allows to match or interpolate
the correct metadata value for each image file.

Lookup table of filename vs metadata vs timestamp

| Select Output Folder

This notebook showing the result of the interpolated metadata.
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https://github.com/ornlneutronimaging/CylindricalGeometryCorrection

ORNL iBeatles software fits experimental Bragg edges

5. Fitting — iBeatles - o x

Steps
Kropff

Bragg Edge Infos

Low Hi C Steel

A_kalculated,

hk.l v Auto
Ay 4,058 A

Range Selected

E Bin Transparency ° Plot ‘@ Active Bins Locked Bins

Step 1 Step 2
Automatic Bragg peak threshold finder Width « 5 e | Fit All Regions (High, Low, Bragg Peak)

B : )
= Initial Guess Locked and Rejected Settings
L=
T

A (| T2 o le-7 - v Auto lock and reject rows &
9
o
= Table Graph
=
5
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&
=4 2 2 1 4.0258 0.0397 0.0000 0.0012 0.0017 0.2242
@ =
oo

Number of digits 4 2

i

d: 100.00%

SPALLATION
NEUTRON
SOURCE

%OAK RIDGE

National Laboratory




Light scan and
preselection of
rojection angles

Autonomous Hyperspeciral
Neutron CT Experiment

Up to factor 5 improvement in time
> Optimization of the scan based on the unique

sample geometry
| > Ability to provide real-time reconstructed data
Autonomous using advanced iterative reconstruction
Decision methods HvoertT W

B

Al Quality

Evaluation -

Scanning Angles
(active learning)

OAK RIDGE

National Laborator y

SPALLATION A
NNNNN ON

SOURCE







WJ
g
=
i~
2
C
—
—
E
=]
=}
2
z
)

&
=
&
=
@)
A




YOU WILL HAVE NO
BUDGET AND NO HOPE
OF SUCCESS. T JUST LIKE
SAYING WERE WORKING
ON AT

COMPLETELY
LET YOU
USELESS, S0 DOLN
ITS A GOOD '
MATCH.

WALLY, T NEED
YOU TO HEAD UP
OUR ARTIFICIAL

INTELLIGENCE

PROJECT.

@ScottAdamsSays

Dilbert.com

&6-20-16 © 2016 Scott Adams, Inc. /Dist. by Universal Uclick

%OAK RIDGE
RCE

al Labor:




Outline

* Neutron imaging facilities at ORNL

e Principle of time-of-flight (TOF) or hyperspectral neutron
Imaging

e« Resonance imaging
 Bragg edge imaging
« Software efforts
 VENUS

e Conclusion




What is VENUS?

 VENUS Is an imaging beamline that can measure unique materials
properties based on their crystalline structures and isotopic content using
two technigues:

* Bragg-edge imaging — quantitative interpretation of total cross-section provides
crystalline structure characterization (cold neutrons ~ meV)

 Resonance imaging - isotopic-sensitive spatially-resolved spectroscopy technique
(epithermal neutrons ~ eV)

VENUS can also penetrate thicker samples using:

« Epithermal imaging — higher energy neutrons provide higher penetration through
thick samples (epithermal neutrons ~ eV)

We are developing hyperspectral reconsiruction algorithms using
machine learning algorithms (due to low signal-to-noise ratio)

OAK RIDGE NNNNNNN AN
nal Labor: URCE \ ).




101 |
Decoupled H,O (BL16)

Decoupled H,O (BL§)

10° Decoupled H, (BL10)

2
Z
o’ i
‘TE 10-1
[ ]
= o
- ®
L 107 °® o
2 Tee
v
10_ h 4 & i
h 4 v & .
o A
High contrast ¥ «

0 1 2 3 4 5 6 7 8 Q 10
Wavelength (A)

%OAK RIDGE

National Labor

ISRD-RCN Workshop




Bragg edge imaging:
20 x 20 cm?, spatial resolution ~ 100 um,
S time resolution is 5 ps.
shielding . .
Resonance imaging:
4 x 4 cm?, spatial resolution ~ 150 ym, time
resolution is 150 ns.

P2

o Beam stop
Front-end optics ‘

buried in shielding

Cave door

5 Control hutch

L

Radiological
Materials Area

% OAK RIDGE (RMA)

National Laboratory

S .




Artistic rendering of VENUS

25 m
Detectors

Neutron beam

Control hutch

Image credit: ORNL/Jill Hemman

Can only be accessed during SNS outages

Sample area
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VENUS Shu’r’rer Core Vessel Insert ond Fixed Aperfure




VENUS defining opftics: variable aperture system (VAS)

Different pinhole Oper’ruf‘re diome’rrs

* |nstalled 4.5 m away from
the source

« Varies collimation ratio
from 400 to 2000

* High collimation value:
« Higher spatial resolution
* Lower intensity

« Beam envelope goes from
a circular to a square cross-
section.
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September 2022: Installation of Vrioble Aperture System

e 4»@“ ¢ - b ,'\‘ - ’ -

b

VAS provides
different L/D ratios
(from 500 to 2000)




Location of the VENUS:
Variable Aperture
System 4.5 m from the -
moderator

Trench is =
0.9 m wide
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Chopper installation

Multiple cable pulls

nstalled and tested nstalled and tested through-out instrument
Chopper 1 ] Chopper 2

MR ws LR T P I:” E:l D I S S ) S O
L H |||#’i’}! rjiaans =
Chopper 1 “7 LI “WTT = --H | P
e e s
- = 5 E:
H = o
4 (Downsfreom) . W i
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Componen’r shleldlng and flight fubes

In the front end of the
beamline:

Installed Coponen
Shielding Green: Component

=3 L shielding to reduce
Completed concrete pour for : | e e R background in the VENUS
component shielding - g .\ T cave

White: Configuration
Component [ N G ‘ - . - \ W& control shielding fo
Shielding Test Fit : T e W\ profect personnel

Ins’rolled Fllqh’r Tube 2 ‘




February 2020

MANDI
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March 2020

Started pouring
the front-end
shielding

MANDI
BL-11B
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June 2020
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ISRD-RCN Workshop
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October 2021

Existing floor rebar
is being mapped

sl
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November 2021

Bi-sector trench
filled in
preparation to
VENUS cave wall
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February 2022

All the beamline rebbar has arrived.
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March 2022

VENUS cave
wall rebar is
installed
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rebar
installation
continues
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July 2022

Opening for
neutron beam

Formwork
removed
giving views of
the VENUS
cave wadlls
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F K installed
August 2022 the remaining walls

VENUS “get-
lost tube™
sleeve
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OCTOber 2022 This side of the VENUS

walls is poured
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November 2022 The VENUS cave walls

are all poured
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JGHUOry 2023 All roof beams are poured
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February 2023 — Painting VENUS!
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Cable trays are installed
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Apfl' 2023 Cable trays are installed
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Shutter conftrols certified and operational
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Outline

* Neutron imaging facilities at ORNL

e Principle of time-of-flight (TOF) or hyperspectral neutron
Imaging

e« Resonance imaging
 Bragg edge imaging
« Software efforts

« VENUS

e Conclusion
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Conclusion

 The VENUS beamline will enter its commissioning phase/hybrid
user program in 2024.

e Science at VENUS will benefit from two unique capabillities:
- Bragg edge imaging
- Resonance imaging

* These technigues may benefit Earth and planetary materials

 The use of advanced software such as HyperCT and iBeatles will
enhance our ability to measure and analyze data

e The future of neutron Imaging is bright!




Thank you

The portion of this research used resources at the SNS and HFIR, DOE Office of Science User
Facilities operated by the Oak Ridge National Laboratory.

neutrons.ornl.gov
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National Laboratory

Neutron Sciences Directorate

Future ~ Science ~ For Users ™ Publications Instruments ~ News/Events ~

For Industry

How to collaborate with us Our beamlines and contact information
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Polarized Neutron Imaging
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Kardjilov et al., ADVANCED MATERIALS & PROCESSES/JULY 2008

Tensorial neutron tomography of three-
dimensional magnetic vector fields in
bulk materials

— | I 5 (mT)
0.10 0.14 0.18
Hilger et al.

Nature Communications 9, 4023 (2018)
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