

INSTITUTO DE NANOCIENCIA V MATERIALES DE ARACON							
			350	1:000	: d		
Simple	D ₂ O, D ₂ , NH ₃ , CH ₄		300	LIQU III		VII	_
molecules		(K)	250	the	1[X
Larger	KDP	ure	200				\backslash
molecules		rat	200	_ "/ []		VIII	
Hydrides	MgH ₂ , gamma-CoH, MgD ₂ : TiD ₂ mixture, Fe hydrides, LiD, NaD, AID ₃	Tempe	150				
perovskite	Na _{1−x} Li _x MgH₃, the ternary hydrides Mg₂NiH₄ hydride		100	XI	xv		-
hydrides	and Mg3CuHx, Laves phase hydrides		0.	1	1	10	100
Hydroxides	MOH family (M = Li,Na,K,), M(OH) ₂ hydroxides (M = Mn, Fe, Co, Ni, Cd, Mg and Ca)	Pressure (GPa)					
		Currently 16 distinct crystalline phases of ice have been measured experimentally.					
Guthrie, J. Phys.: Condens. Matter 27 (2015) 153201		Pruzan P 1998 The Phase Diagram of H ₂ O					

By a further increase in pressure, hydrous silicates expand their stable temperature region to the higher temperatures. This study revealed that katoite remains fundamentally stable over a wide P–T area, at least up to 8 GPa and 850 °C.

