Neutron (and X-ray) imaging for coupled processes in porous media

Alessandro Tengattini et al.

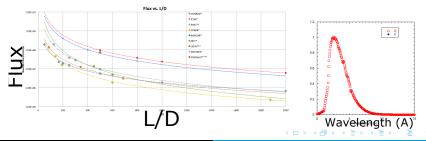
< □ > < @ > < 注 > < 注 > □ ≥

A historical note about 3SR

Relatively new (2015) Neutron TomographBorn from the collaboration between

A historical note about 3SR

•*Relatively* new (2015) Neutron Tomograph •Born from the collaboration between



3 / 54

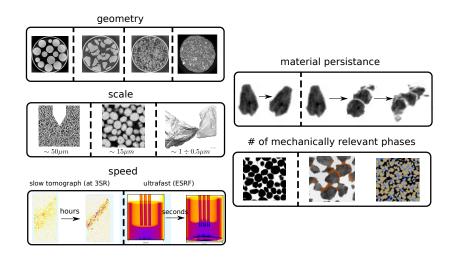
A historical note about 3SR

•*Relatively* new (2015) Neutron Tomograph •Born from the collaboration between

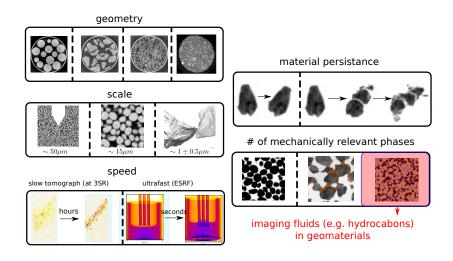
4 / 54

A historical note about 3SR

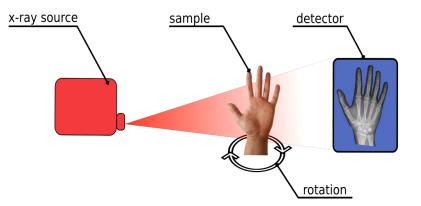
Relatively new (2015) Neutron Tomograph
Born from the collaboration between



A historical note about 3SR

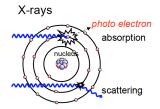

•New (2015) Neutron Tomograph •Born from the collaboration between

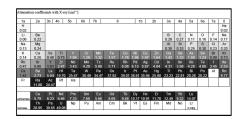
A historical note about 3SR



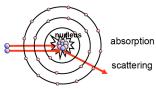
A historical note about 3SR

What is (neutron) imaging?


Hydro-thermo-chemo-mechanics though neutron imaging Hydro-thermo-chemo-mechanics though neutron (and x-ray!) The instrument, Conclusions and Prospectives What is tomography Neutrons and x-rays



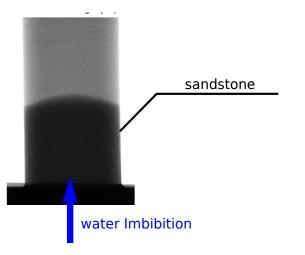
・ロト ・四ト ・ヨト ・ヨト


What is (neutron) imaging?

Hydro-thermo-chemo-mechanics though neutron imaging Hydro-thermo-chemo-mechanics though neutron (and x-ray!) The instrument, Conclusions and Prospectives What is tomography Neutrons and x-rays

neutrons

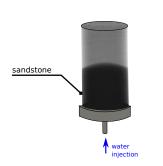
Attenuation coefficients with neutrons [cm?'] 3b 4b 5b 6b 7b 1b 2b 3a 4a 5a 6a 7a He 0.02 344
 B
 C
 N
 O
 F
 Ne

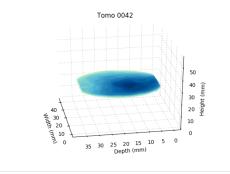

 101.60
 0.56
 0.43
 0.17
 0.20
 0.10

 Al
 Si
 P
 S
 Cl
 Ar

 0.10
 0.11
 0.12
 0.06
 1.33
 0.03
 Ca 0.08 Kr Rh 10.88 Pd Aq Cd In 0.78 4.04 115.11 7.58 0.14 Cs 0.29 Ba 0.07 Ra La Hf 0.52 4.99 Hg TI 0.47 Pb Bi R Ha Ce 0.14 Lr neut 0.69

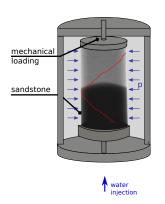

What is (neutron) imaging?

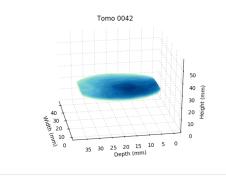

Hydro-thermo-chemo-mechanics though neutron imaging Hydro-thermo-chemo-mechanics though neutron (and x-ray!) The instrument, Conclusions and Prospectives What is tomography? Neutrons and x-rays



Hydro-Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics

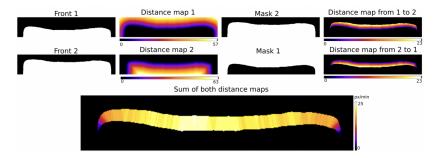
Fluid flow within an intact rock



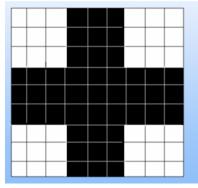

Tudisco, *et al.*, Journal of Geophysical Research: Solid Earth (2019) Extegarai, *et al.*, Journal of Imaging (2021) Viera-Lima, *et al.*, submitted (2023)

Hydro-Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics

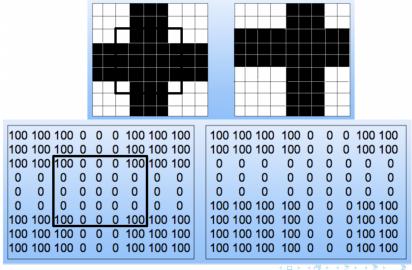
Fluid flow within a damaged rock


Quantification of front position, speed, permeability

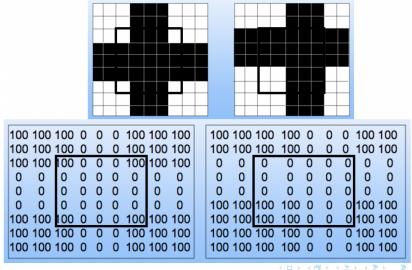
Tudisco, *et al.*, Journal of Geophysical Research: Solid Earth (2019) Extegarai, *et al.*, Journal of Imaging (2021) Viera-Lima, *et al.*, submitted (2023)


Hydro-Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics

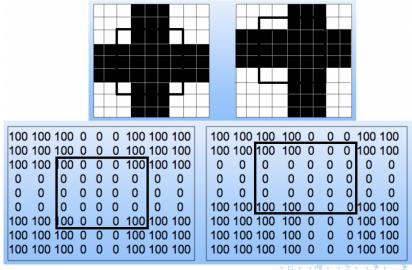
An example of "Bespoke analysis" - speed maps

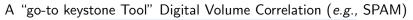

Hydro-Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics

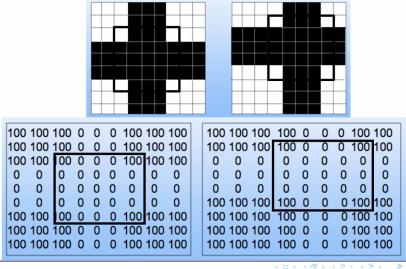
A "go-to keystone Tool" Digital Volume Correlation (e.g., SPAM)

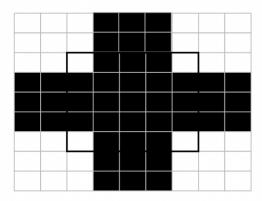


100	100	100	0	0	0	100	100	100
100	100	100	0	0	0	100	100	100
100	100	100	0	0	0	100	100	100
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
100	100	100	0	0	0	100	100	100
100	100	100	0	0	0	100	100	100
100	100	100	0	0	0	100	100	100



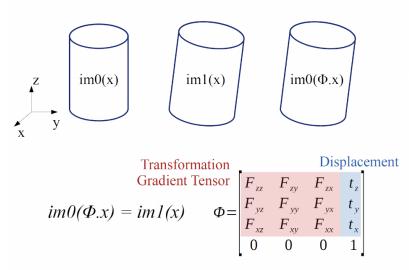






Hydro-Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics

A "go-to keystone Tool" Digital Volume Correlation (e.g., SPAM)


Best correlation?

Hydro-Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics

A "go-to keystone Tool" Digital Volume Correlation (e.g., SPAM)

15 / 54

Hydro-Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics

A "go-to keystone Tool" Digital Volume Correlation (e.g., SPAM)

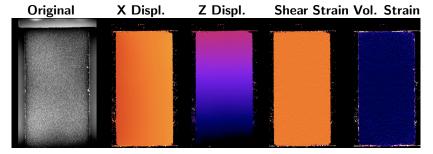
Error function:

$$\tau(\Phi) = \frac{1}{2} \sum_{x \in ROI} (im0(x) - im1(\Phi x))^2$$

Minimisation problem:

 $\nabla \tau(\Phi) = 0$

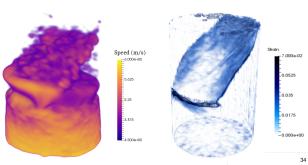
Newton's method:


$$\nabla \tau(\Phi^n) + \nabla^2 \tau(\Phi^n) : \delta \Phi^{n+1} = 0$$

Implementation *:

$$\delta \Phi^{n+1} = (M^n)^{-1} A^n$$

Hydro-Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics


A "go-to keystone Tool" Digital Volume Correlation (e.g., SPAM)

3D SPEED FIELD

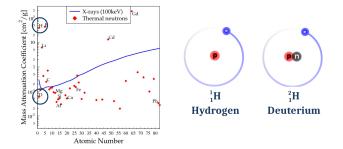
Hydro-**Hydro-mechanics** Hydro-thermo-mechanics Hydro-chemo-mechanics

Quantification of incremental strain through Digital Volume correlation of the map of fluid Speed

3D DEVIATORIC STRAIN FIELD

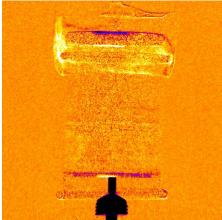
Hydro-**Hydro-mechanics** Hydro-thermo-mechanics Hydro-chemo-mechanics

How about more complex geometries?



Lewis *et al.*, EGU (2017) Lewis *et al.*, Transport in Porous Media (2023)

▶ ∢ ⊒ ▶


Hydro-Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics

Neutron are isotope sensitive, "normal water" and heavy water have an order of magnitude difference in opacity Can be used to track fluid in an already saturated sample

Hydro-**Hydro-mechanics** Hydro-thermo-mechanics Hydro-chemo-mechanics

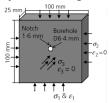
Injection in D20-saturated sample

Lewis *et al.*, EGU (2017) Lewis *et al.*, Transport in Porous Media (2023)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

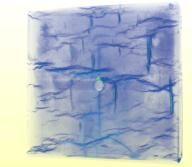
Hydro-**Hydro-mechanics** Hydro-thermo-mechanics Hydro-chemo-mechanics

and in 3D?



Lewis *et al.*, EGU (2017) Lewis *et al.*, Transport in Porous Media (2023)

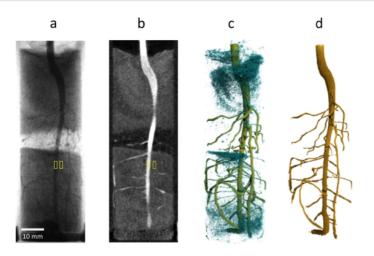
▲ □ ▶ ▲ □ ▶ ▲ □ ▶


Hydro-Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics

Hydrofracking of rocks

 $\begin{array}{l} \mbox{Marcellus shale} \\ \sigma_1 = 70 \mbox{ MPa} \\ \mbox{Flow rate } /6/12 \mbox{ ml/min} \end{array}$

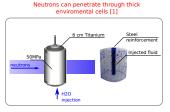
Quantification of front position, speed, permeability

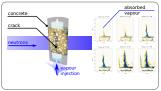


Roshankhah, et al., Géotechnique letters (2018) Roshankhah, et al., USRMS (2019)

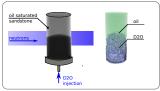
< ロ > < 同 > < 三 > < 三 >

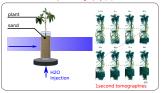
Hydro-**Hydro-mechanics** Hydro-thermo-mechanics Hydro-chemo-mechanics


Other applications

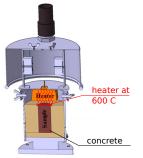

<ロ> <回> <回> <回> < 回> < 回>

Hydro-Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics

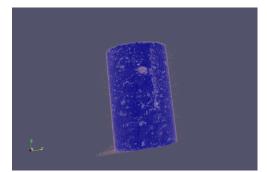

Other applications


Neutrons can help track even vapour low into fractures [2]

Neutrons can help track flow into immiscible fluids (e.g., oil) [3]


Neutrons tomographies can be acquired as fast as 1s per tomography [4]

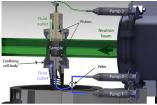
Yehya et Al, Nucl. Inst. Met. Phys. Res. A (2018)
 Madankan et al., Ready for submission (2021)


Hydro-Hydro-mechanics **Hydro-thermo-mechanics** Hydro-chemo-mechanics

Heating construction materials to fire-like conditions

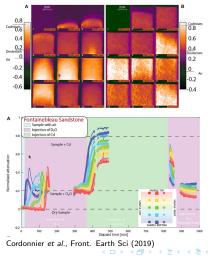
Understanding of explosive spalling for fire safety of buildings

Quantification of moisture migration, accumulation for different materials, 20 second tomographies



Dauti *et al.*, Cement and Concrete Research (2018) Dauti *et al.*, Transport in Porous Media (2019) Tengattini *et al.*, Strain (2020)

< ロ > < 同 > < 三 > < 三 >

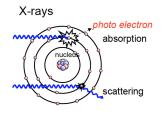

Hydro-Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics

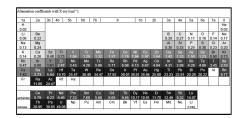
Cadmium Sorption and Transport in Porous Rocks

Study of Cd concentration

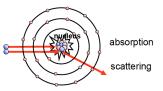
$\label{eq:Quantification of Cd sorption and displacement of Contaminants$

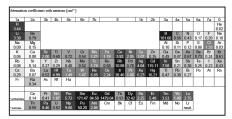
Hydro-Hydro-mechanics Hydro-thermo-mechanics **Hydro-chemo-mechanics**

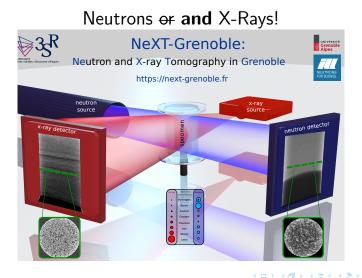

In summary


- = Neutrons have a different contrast from x-rays
- Neutrons can see light elements (such as hydrogen, lithium) and their compounds (*e.g.*, water, oil)
- Neutrons are isotope sensitive; for example can distinguish deuterated fluids as D20 vs H2O
- Neutron can penetrate through thick metal casings for extreme conditions (pressure, temperature, acids)

イロト イポト イラト イラト


NeXT-Grenoble and other instruments Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics


Neutrons or X-Rays?

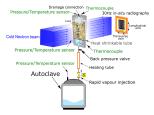


neutrons

NeXT-Grenoble and other instruments Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics

29 / 54

NeXT-Grenoble and other instruments Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics



Martell et al., Science Advances, 2022

< ロ > < 同 > < 三 > < 三 >

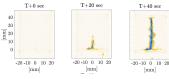
NeXT-Grenoble and other instruments Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics

Vapour Injection

Emulating Loss of Coolant Accident in Reactor

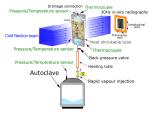
anr°

Initially saturated



(日)

Initially dry



Gupta, *et al.*, Cem Concrete Research (2022) Lukich, *et al.*, Material Letters (2021)

NeXT-Grenoble and other instruments Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics

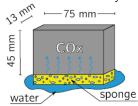
Vapour Injection

Emulating Loss of Coolant Accident in Reactor

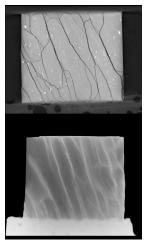
anr®

3D rendering of the superimposed segmented phases

- Voxel size = 47 µm, Image resolution: 920x920x920
- > Segmentation in spam (Stamati et al., 2020)



Gupta, *et al.*, Cem Concrete Research (2022) Lukich, *et al.*, Material Letters (2021)


NeXT-Grenoble and other instruments Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics

Hydo-mechanical coupling of Callovo-Oxfordian Clayrock

Rock used for long-term storage of radioactive contaminants

x-rays (structure)

neutrons (fluids)

Stavropoulou, et al., Acta Geotechnica (2018) Stavropoulou, et al., Front. in Earth Science (2020)

< ロ > < 同 > < 三 > < 三 >

What is (neutron) imaging? Hydro-thermo-chemo-mechanics though neutron (and x-ray!)

COx

00

contaminants

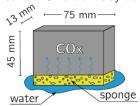
ANDRA

water

13 mm

mm

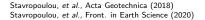
45


Hvdro-mechanics

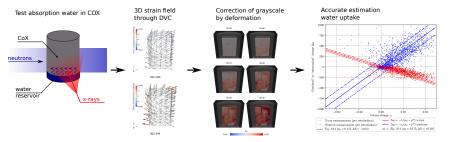
Hydo-mechanical coupling of Sample Sample Sample Time since Sample Normal-N Parallel-X Normal-X first wetting Parallel-N Callovo-Oxfordian Clayrock 0-5 min -75 mm— 10-15 min 20-25 min 30-35 min sponge 40-45 min Rock used for long-term storage of radioactive 50-55 min 60-65 min 80-85 min 10 mm x-ray attenuation coefficient (µ) or neutron beam transmission (1/l_n)

> low high Stavropoulou, et al., Acta Geotechnica (2018) Stavropoulou, et al., Front. in Earth Science (2020)

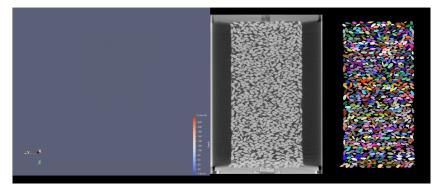
NeXT-Grenoble and other instruments Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics

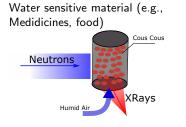

Hydo-mechanical coupling of Callovo-Oxfordian Clayrock

me change (% of initial sample volume) 10 8 Mask Volume Increase (Parallel-X) 4 Crack Volume (Parallel-X) Absorbed Water (Parallel-N) Mask Volume Increase (Normal-X) ----Crack Volume (Normal-X) ----Absorbed Water (Normal-N) ----20 40 60 80 100 Time since start of imbibition (min)

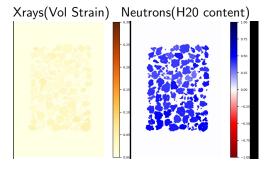

Rock used for long-term storage of radioactive contaminants

< ロ > < 同 > < 三 > < 三 >

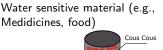

NeXT-Grenoble and other instruments Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics


Stavropoulou, et al., Front. in Earth Science (2020)

NeXT-Grenoble and other instruments Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics

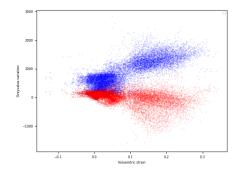

How about Granular Media - Discrete DVC!

NeXT-Grenoble and other instruments Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics



Societal problem: Caking – loss of usability of food exposed to humidity Horizon 2020 ITN CALIPER

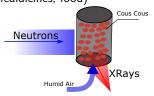
Vego, Tengattini, *et al.*, Soft Matter (2022) Vego, Tengattini, *et al.*, Granular Matter (2023)


NeXT-Grenoble and other instruments Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics

Neutrons Humid Air

Societal problem: Caking – loss of usability of food exposed to humidity Horizon 2020 ITN CALIPER

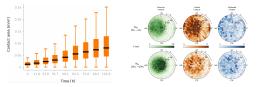
Statistical correlation of Vol. Strain to H20 content



Vego, Tengattini, *et al.*, Soft Matter (2022) Vego, Tengattini, *et al.*, Granular Matter (2023)

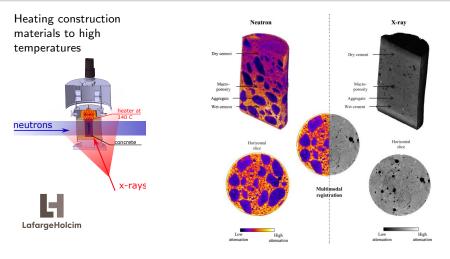
< D > < P > < P > <</pre>

NeXT-Grenoble and other instruments Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics


Water sensitive material (e.g., Medidicines, food)

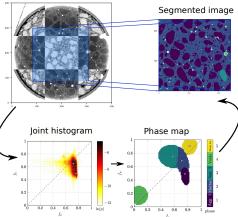
Societal problem: Caking – loss of usability of food exposed to humidity Horizon 2020 ITN CALIPER

Contact Analysis

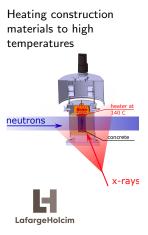


< ロ > < 同 > < 三 > < 三 >

Vego, Tengattini, *et al.*, Soft Matter (2022) Vego, Tengattini, *et al.*, Granular Matter (2023)


NeXT-Grenoble and other instruments Hydro-mechanics Hydro-thermo-mechanics Hydro chemo mechanics

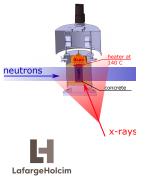
Tudisco *et al.*, Measurement Science and Technology (2017) Roubin *et al.*, Cement and Concrete Composites (2019) Sleiman, Cement and Concrete Research (2021)

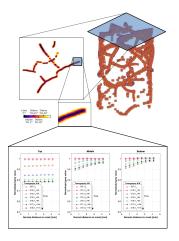

NeXT-Grenoble and other instruments Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics



Tudisco et al., Measurement Science and Technology (2017) Roubin et al., Cement and Concrete Composites (2019) Sleiman, Cement and Concrete Research (2021)

NeXT-Grenoble and other instruments Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics





Tudisco *et al.*, Measurement Science and Technology (2017) Roubin *et al.*, Cement and Concrete Composites (2019) Sleiman, Cement and Concrete Research (2021)

NeXT-Grenoble and other instruments Hydro-mechanics **Hydro-thermo-mechanics** Hydro-chemo-mechanics

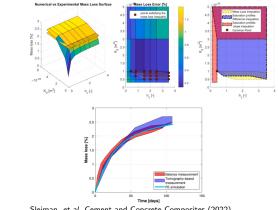
Heating construction materials to high temperatures

Tudisco *et al.*, Measurement Science and Technology (2017) Roubin *et al.*, Cement and Concrete Composites (2019) Sleiman, Cement and Concrete Research (2021)

What is (neutron) imaging? Hydro-thermo-chemo-mechanics though neutron (and x-ray!)

> heater at 140 C

concrete

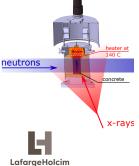

x-rays

Heating construction materials to high temperatures

neutrons

LafargeHolcim

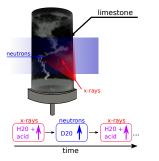
Towards more realistic numerical models



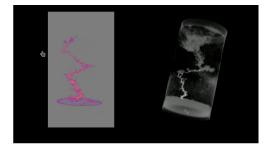
Tudisco et al., Measurement Science and Technology (2017) Roubin et al., Cement and Concrete Composites (2019)

NeXT-Grenoble and other instruments Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics

Heating construction materials to high temperatures


Towards more realistic numerical models

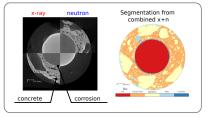
Tudisco *et al.*, Measurement Science and Technology (2017) Roubin *et al.*, Cement and Concrete Composites (2019) Sleiman, Cement and Concrete Research (2021)


NeXT-Grenoble and other instruments Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics

Wormhole Growth in Dissolving Limestones

From X-ray: wormhole development by acid dissolution

From neutron: evolution hydraulic propertie

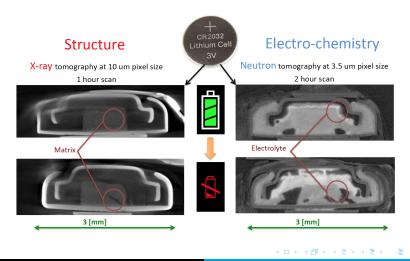


Szymczak et al., EGU (2021) Szymczak et al., AGU (2020) Cooper et al., Advances in Water Resources(2023) Cooper et al., under redaction(2023)

NeXT-Grenoble and other instruments Hydro-mechanics Hydro-thermo-mechanics Hydro-chemo-mechanics

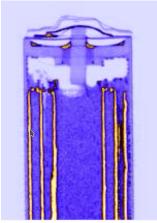

Other applications

The combination of neutron and x-rays allow for advanced segmentation and image processing [1-3]

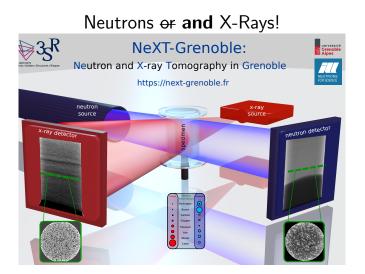

Robuschi et Al., Cement and Concrete Research (2021)
 Tudisco et Al., Measurement Science and Technology (2017)
 Roubin et Al., Cement and Concrete Composites (2019)

Neutron and x-ray imaging are highlty complementary *e.g.*, to identify organic material

What can NeXT do? NeXT 1.0 The project A zoom on the upgrades Conclusions

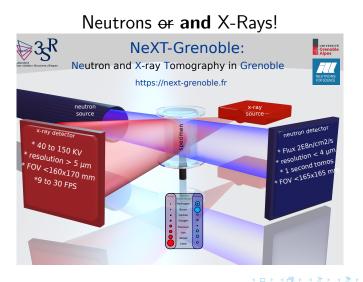

Other applications

Tengattini et al. Neutron (and X-ray) imaging for porous media 39 / 54


What can NeXT do? NeXT 1.0 The project A zoom on the upgrades Conclusions

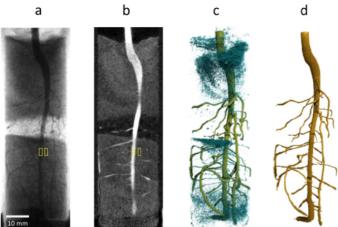
30 minute tomographies at 30um

Ziesche et Al. 2020 Nature Comm. Ziesche et Al. 2020 J. Electrochem. Soc.


What can NeXT do? NeXT 1.0 The project A zoom on the upgrades Conclusions

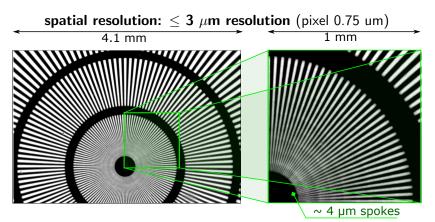
(日)

41 / 54


What can NeXT do? NeXT 1.0 The project A zoom on the upgrades Conclusions

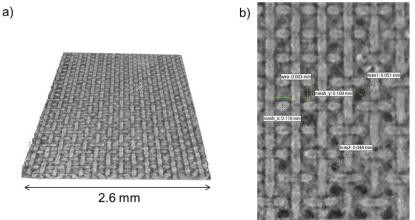
42 / 54

What can NeXT do? NeXT 1.0 The project A zoom on the upgrades Conclusions


temporal resolution: 1.5s tomographies

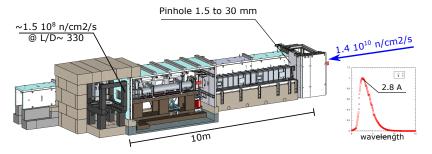
Totzke et al., 2019 Optics Express

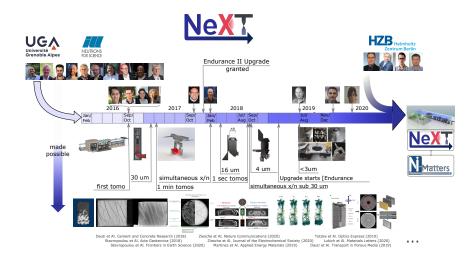
- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト


What can NeXT do? NeXT 1.0 The project A zoom on the upgrades Conclusions

Tengattini, Kardjilov, Helfen et al., 2022 Optics Express

What can NeXT do? NeXT 1.0 The project A zoom on the upgrades Conclusions


spatial resolution: \leq 3 μ m resolution (pixel size 1.5 μ m)



 ${\sim}10h~{\rm tomo}~{\rm Tengattini}$, et al., 2022 Optics Express

What can NeXT do? NeXT 1.0 The project A zoom on the upgrades Conclusions

The old instrument (NeXT V.1.0)/ D50Tomo

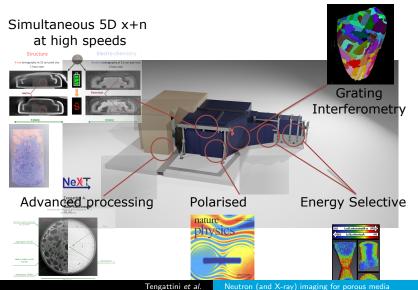


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シタペ

What can NeXT do? NeXT 1.0 **The project** A zoom on the upgrades Conclusions

NeXT 2.0

(日)


э

What can NeX I do? NeXT 1.0 The project A zoom on the upgrades Conclusions

+) 4 (·

What can NeX I do? NeXT 1.0 The project A zoom on the upgrades Conclusions

50 / 54

What can NeX I do? NeXT 1.0 The project A zoom on the upgrades Conclusions

The status quo

51 / 54

What can NeXT do? NeXT 1.0 The project A zoom on the upgrades **Conclusions**

- Temendous possibilities from Neutron and x-ray imaging
- Neutron Imaging now down to $\leq 4\mu$ m resolution and up to 1s tomographies (at much coarser resolutions)
- These images are *quantitative*, *i.e.*, they are **data**
- Plenty of things to fix, plenty of things to develop, in particular in the joint use of x-rays and neutrons

there is still plenty of work (and fun) ahead!

What can NeXT do? NeXT 1.0 The project A zoom on the upgrades **Conclusions**

Want to know more?

- About neutron (plus x-ray) imaging review papers:
 - For Geomechanics: Tengattini et al., Geom. Ener. Envir. (2021)
 - For Material science : Kardjilov et al., Materials today (2018)
 - For Fluid Flow: Perfect et al., Earth Science Review (2014)
- about NeXT-Grenoble:
 - Tengattini et al., Nucl. Inst. Met. Phys. Res. A (2020)
 - o contact@next-grenoble.fr
 - https://next-grenoble.fr/

Conclusions

Many many people to thank!

C. Viggiani

E. Ando'

S. Hall

L. Helfen

N. Lenoir N. Kardjilov C. Couture D. Atkins

Sleiman

P. Besuelle

S. Dal Pont H. Cheick- M. Briffaut D. Dauti

F. Dufour Ε. Stavropoulou

G. Couples M. Madankan P. Szymczak M. Cooper

E. Tudisco

E.M.

Charalampidou

I Andrade S. Roshankhah

< ロ > < 同 > < 三 > < 三 >

F. Renard B. Cordonnier D. Gregoire Α. Pluymakers

H. Lewis

Neutron (and X-ray) imaging for porous media

54 / 54