

• Dynamic properties of Earth and Planetary materials

In-Situ Studies of Rock Deformation (ISRD): Research Coordination Network

- Goal: Collaboration, Innovation, and Transformation
- **Charge:** "...facilitate the integration of beamline technologies with deformation experiments and create new directions for experimental rock deformation research."
- **Task**: Host a series of five workshops at synchrotron and neutron sources that bring together geophysicists and beamline scientists to identify pressing research challenges that can be addressed using synchrotron X-ray and neutron capabilities
 - Science Workshops:
 - CHESS Workshop (June 2020, Virtual)
 - APS Workshop (January 2021, Virtual)
 - Neutron Workshop (July 2023, in-person)
 - Hands-on training sessions
 - Shadow a beamline user (Fall 2022, Spring 2023 APS 6-BMB)
 - AE Workshop (March 2023)
 - Tomography Workshop (January 2024, ALS)

• Steering Committee

Collaboration, Innovation and Transformation

• Advisory Committee

Neutrons & NIST

Daniel S. Hussey *Physical Measurement Lab* National Institute of Standards and Technology

NIST Neutron Imaging Team

Youngju Kim, APR 2021-

M. Cyrus Daugherty, FEB 2021-

Victoria DiStefano, 2019-2020, Now AAAS Fellow w/ DOE OS

David L. Jacobson

INFER Collaboration

Name	Affiliation
Hunter Meyer	LSU, Physics
Joyoni Dey	LSU, Physics
Peter Bajcsy	NIST, ITL
Pushkar Sathe	NIST, ITL
Katie M. Weigand [.]	t NIST, NCNR
Paul A. Kienzle	NIST, NCNR
Ryan P. Murphy	NIST, NCNR
Caitlyn Wolf	NIST, NCNR
Hubert King	NIST, NCNR
Daniel S. Hussey	NIST, PML
David L. Jacobson	NIST, PML
Jacob M. LaManna	aNIST, PML
M. Cyrus	
Daugherty	NIST, PML
Michael G. Huber	NIST, PML
Nikolai N. Klimov	NIST, PML
Sarah Robinson	NIST, PML
Youngju Kim	UMD PREP Post Doc
Dimitry Pushin	University of Waterloo
Dusan Sarenac	University of Waterloo
Connor Kapahi	University of Waterloo
Atishay Jain	Brown University
Ritambhara Singh	Brown University

Jacob M. LaManna

Eli Baltic

National Institute of Standards and Technology U.S. Department of Commerce

Daniel S. Hussey

AGU Fall Meeting 2023 San Francisco, CA & Online Everywhere 11-15 December 2023

Session: Synchrotron X-ray and Neutron Characterization of Geomedia for Energy Applications (MR019)

Static and dynamic synchrotron X-ray and neutron techniques have increasingly been applied to geologic systems to observe nanoscale structure, reaction, and transport in porous geomedia. In addition to *ex situ* characterization, these techniques can be applied in conjunction with environmental cells to enable *in situ* measurements at field conditions. This session focuses on the application of synchrotron X-ray and neutron techniques for energy-related systems including hydrocarbon recovery, carbon mineralization, geologic hydrogen storage, methane storage, compressed air energy storage, geothermal systems, etc., as well as the advancement of X-ray and neutron techniques, tools, and data interpretation for geologic systems.

Conveners: Chelsea Neil¹, Hongwu Xu^{1,2}, Qingyun Li³

¹ Los Alamos National Laboratory

² Arizona State University

³ Stony Brook University

Scan to open the session website and submit an abstract!

The free neutron

Wormhole formation in Indiana Limestone

The Challenge of Neutron Scattering: Low Brightness

Reactor Neutron Source

Gen-3 Synchrotron

Complementarity of multimodal data can enable new science

New Instruments and Neutron Sources are coming on-line

European Spallation Source Lund, Sweden Heloisa Bordallo, Thursday AM

New Instruments and Neutron Sources are coming on-line

VENUS @Spallation Neutron Source Oakridge, TN Hassina Bilheux, Thursday AM

New Instruments and Neutron Sources are coming on-line

XtremeD at the Institute Laue-Langevin Grenoble, France Javier Campo, Wednesday AM

National Institute of Standards and Technology (NIST, in USA)

- Main Campus Located in Gaithersburg, MD USA
- Satellites in Boulder, CO and Charleston, SC
- ~15 miles north of Washington D.C.
- Established 1901, First U.S. National Lab
- 650 acres, 3000 staff, 3000 associates, 4 Nobel Laureates

NIST Center for Neutron Research (NCNR)

- 20 MW Research Reactor
- Operating since 1967, re-licensed to run (at least) until 2029
- Largest neutron scattering user program in the U.S.
- 28 thermal and cold neutron scattering and imaging facilities

NCNR Tour this afternoon

18

Two Instrument Development Projects I'm excited about

Neutron Microscope based on Wolter optics

Conventional Image

Microscope Image

Expect a gain of 10,000 in flux for spatial resolution few micrometers

National Institute of Standards and Technology U.S. Department of Commerce Neutron Dark Field Imaging of Hierarchical Structures

 $0.08~\ensuremath{\text{Pore Radius}(\mu m)}\ 3.8~0~\ensuremath{\text{Volume Fraction}}\ 0.06$

If Wolter optics perform, it may warrant upgrading the X-ray source

X-rays generated from Inverse Compton Scattering from 100 MeV electrons and 1 µm lasers Shown: Lumitron's LINAC (www.lumitronxrays.com)

We are all here to share our expertise and to learn from one another.

