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Outline

» Models for thinking about deforming rocks
» How x-rays look at polycrystalline materials

» Data interpretation with Elastic Plastic Self Consistent
(EPSC) modeling

» Application of EPSC to diffraction data
» Observing deformation mechanisms

» Measuring strength and critical resolved shear stresses
» Measuring the acoustoelastic effect




Deforming rocks dre complicafed!

Even for a single phase:
Elastic anisotropy

Plastic anisofropy

PS — there are also grain boundaries







Self-consistent models r

Grauns can have anisotropic
properties but there is o
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Self organized stress and strain

Finite Element Model
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Moose Framework

Kidman et al (in prep)



When to employ which model

» Experiment produces a scalar result (e.g. flow strength)
» Apply scalar model

» Experiment produces population averaged information (e.g.
powder diffraction)

» Apply EPSC, VPSC
» Experiment produces 2D or 3D spatial information
» Apply FEM, DEM etc.




Information from powder diffraction

YAG screen

Grain sub populations

=15,

lCompression axis

Each peak comes from a sub population




Each sub-population is doing its own thing

Resolved shear stress
on slip direction
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Elastic Plastic Self Consistent Models

» Input:
» Stress and strain boundary conditions

» Orientation information for each crystal in
the system

» Single crystal elastic constants

» Slip systems with CRSS and hardening
parameters

(¢l I' = shear strain
T=1+ (11 + ¢1F)[1 i~ ( S /Tl)] T = CRSS




Elastic Plastic Self Consistent Models

» Increments the chosen boundary condition

» Calculates stress and strain for each crystal

» Homogeneous elastic medium is average of all crystals
» |terates for each step

» QOutput for each step:

» Macroscopic stress (or strain)
» Elastic and plastic strain for each crystal

» EPSC code provided by Carlos Tome (LANL)




Advantages of self-consistent
models for powder diffraction

herve Lattice straln Ls
vecast as stress,
usually wejust plot

» Uses anisotropic crystalline properties differential lattice
strain

» Accounts for non-diffracting grains

» Forces experimentalist to ‘listen’ to
what the sample is ‘saying’

» Not all grain sub populations are
doing the same things

» Can’'trely on a small number of sub
populations to get ‘the answer’

Differential Stress, GPa

» Unanticipated deformation
mechanisms are revealed

Macroscopic Strain

EPSC model for quartz




D-DIA experiments
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INn-situ Powder Diffraction
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(SiO, (a-quartz), 800 C, 2 GPa, 2 x 10-%/sec) Stresses calculated USiﬂg

Singh et al. (1998)
1.4 diffraction elastic
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« Polycrystalline
alumina sample

 Nano-
polycrystalline
diamond piston

Lattice Strain

Lattice Strain

r 0.01

P =5.4GPa
T=663°C

L -0.005
Macroscopic Strain

Traylor et al (in prep)
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Applications

» Investigate deformation mechanisms

» Identify missing mechanisms
» Kink bands in olivine
» Dauphine twinning in quartz
» Anelastic deformation at low strain

» Determine critical resolved shear stress for slip systems

» Determine sample strength
» Measure acoustoelastic effect




» Applications Olivine slips systems do not have a closed yield surface
» Investigate deformation « Models work harden
mechanisms « (002) reflection cannot be matched

Fayalite, 25 C, 2.5 GPa
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» Applications Olivine slips systems do not have a closed yield surface

» Investigate deformation  Models work harden
mechanisms « (002) reflection cannot be matched
» Olivine kink bands 0.03
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The trouble with Young's modulus in polycrystalline materials

San Carlos Olivine SaR_364°/sec
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San Carlos
P=3.8 GPa
T=440 C

Sample strain
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Add “grain boundary”

slip system: 130 AVE
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Flnish up with real
sL'Lp systems
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EPSC model fit
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Temperature dependence of low
strain anelastic behavior

4 @ singlextl 4 observed .
Olivine Quartz
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» Applications

» Investigate other
deformation mechanisms

» Measure CRSS

» Depends on uniqueness
of slip systems
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crystal studies compiled by
Durinck et al. 2007
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» Applications

» Investigate other
deformation mechanisms

» Measure CRSS

» Measure sample strength

Quartz (novacultite)
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Acoustoelastic Effect
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Sample Assembly Components -

Compression axis

conical slits

DIASCoPE System

0 Pulse Echo Overlap(PEO) Method

|R2 over R1
0,008

0.004+

04

Amplitude

-0.004+

-0.008

évvm o g
. 6 X 5 y
i Time (psec)

L__polarization direction Travel time (psec)
Propagation direction

Ultrasonic Wave
Type of Ultrasonic wave




Wave Velocity (km/s)

Ultrasound velocity as a function of
compressive

» P-wave slope = Ay,

» P-wave velocities increase with
compression

» S-wave slope = Ay
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Dependence of acoustoelastic constant A;; on bulk
modulus

1000000 ® Rods

© Polycrystalline Alumina (This Study)
100000 - O Polycrystalline Quartz (Traylor et al., in prep)
@ Polycrystalline Olivine (Traylor et al., 2021)
@ Magnesium

10000 + @ Aluminum Alloy

@ Steel Alloy

1000 - @ Copper

@ Sintered Molybdenum

) @ Resintered Molybdenum

100 1 @ Sintered Tungsten

@ Resintered Tungsten

10 4
e o
1 - %O%.

O.’I T T T
0 100 150 200
Bulk Modulus (GPa)




Conclusi@iss

» EPSC forward models of powder x-ray data from D-DIA experiments
provides a rich source of information about what is going on inside

rocks

» Going forward
» EPSC/VPSC codes for more than one phase

» Automated model optimization




