

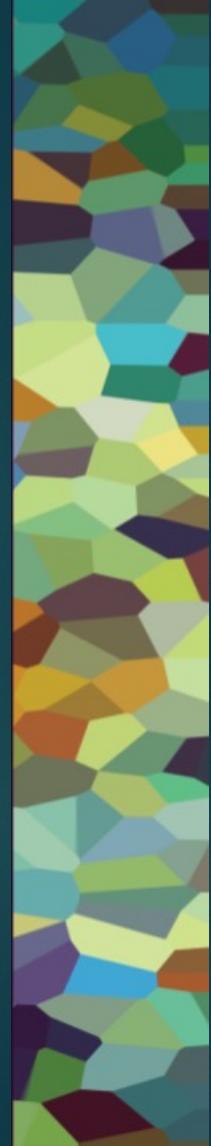
Contributions of Synchrotron X-Ray Powder Diffraction to Understanding High Pressure Rock Deformation

PAMELA BURNLEY

UNIVERSITY OF NEVADA, LAS VEGAS

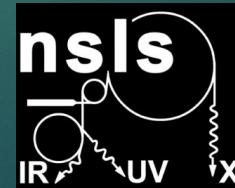
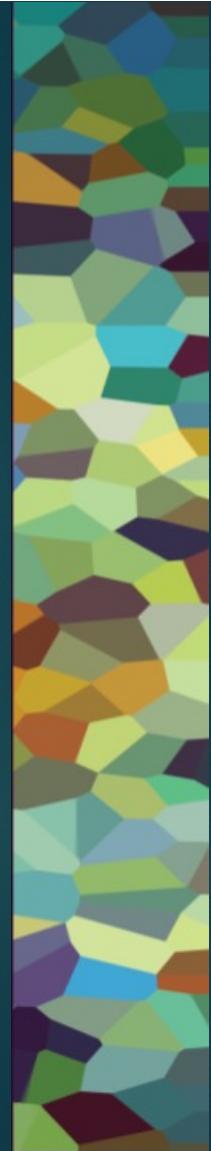
SEES-ISRD 2025 Joint Meeting

August 11, 2025



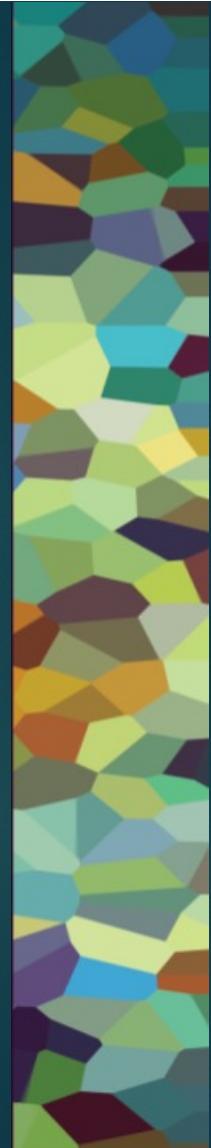
Acknowledgements

- ▶ Taryn Traylor, Matthew Whitaker, Denali J. Medina, Dr. Shirin Kaboli
- ▶ Funding from
 - ▶ DOE NNSA (NA0004079; NA0003896)
 - ▶ NSF (EAR-0838579; EAR-1361339)
- ▶ Beamline supported by
 - ▶ COMPRES
 - ▶ DOE BES (DE-AC02-98CH10886)
 - ▶ Beamline scientist: Haiyan Chen



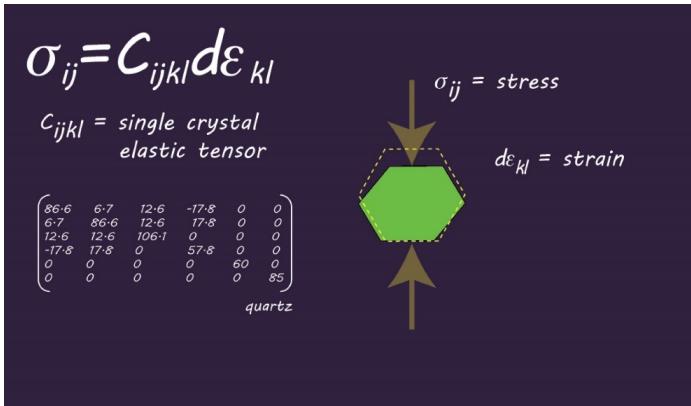
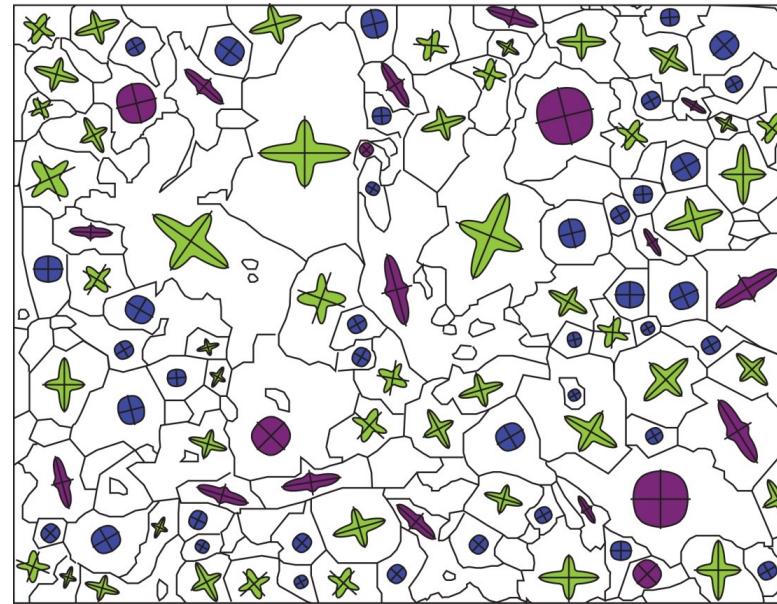
Outline

- ▶ Models for thinking about deforming rocks
- ▶ How x-rays look at polycrystalline materials
- ▶ Data interpretation with Elastic Plastic Self Consistent (EPSC) modeling
- ▶ Application of EPSC to diffraction data
 - ▶ Observing deformation mechanisms
 - ▶ Measuring strength and critical resolved shear stresses
 - ▶ Measuring the acoustoelastic effect



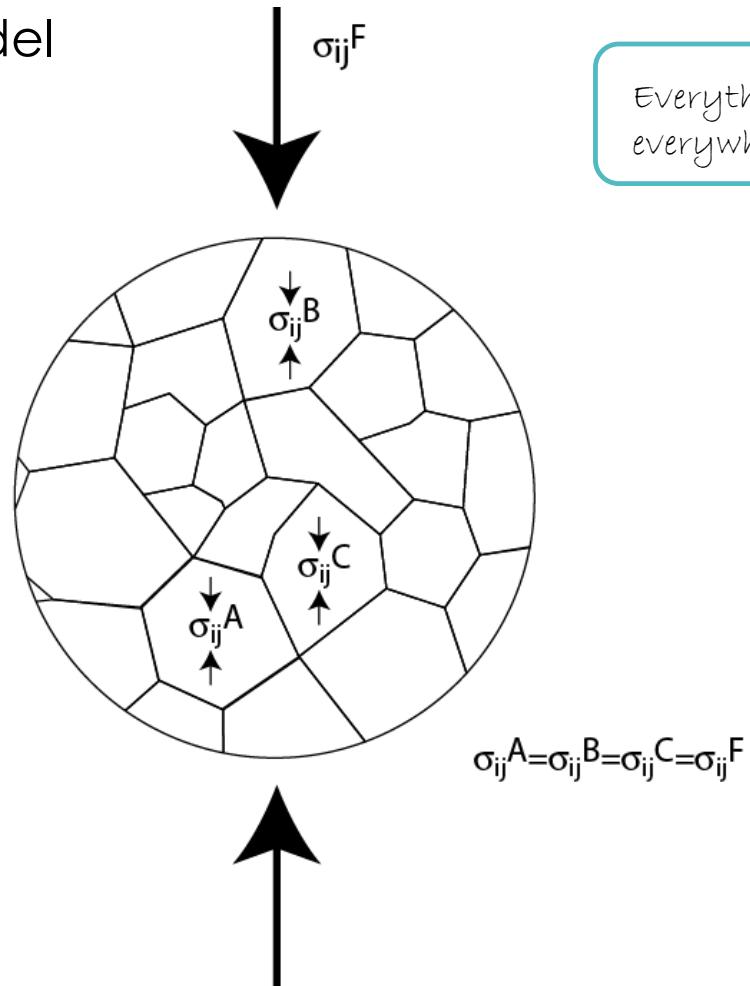
Deforming rocks are complicated!

- ▶ Even for a single phase:
 - ▶ Elastic anisotropy
 - ▶ Plastic anisotropy



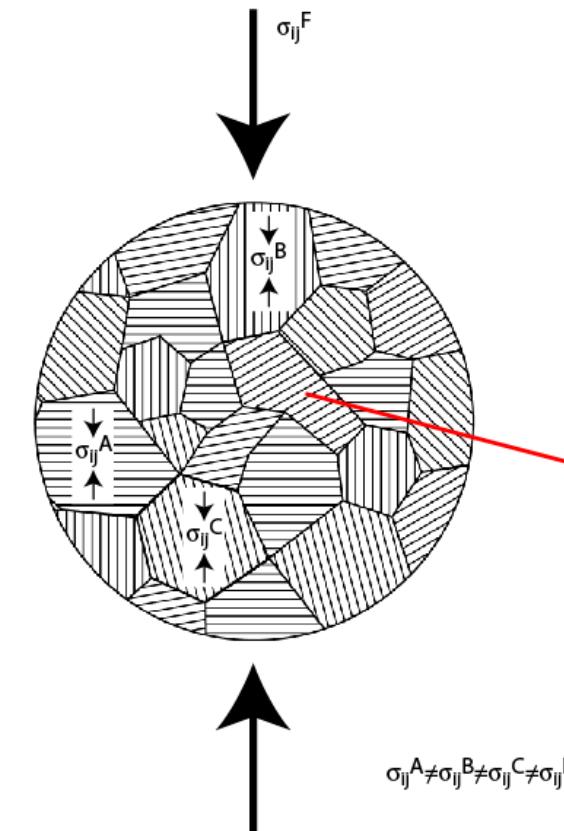
PS – there are also grain boundaries

Simplest model
(scalar)

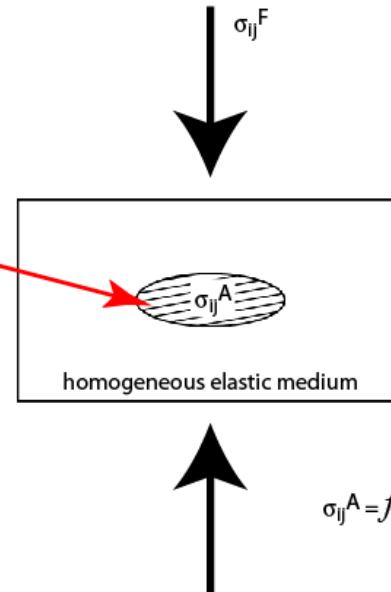


Everything is the same
everywhere

Self-consistent models



$$\sigma_{ij}^A \neq \sigma_{ij}^B \neq \sigma_{ij}^C \neq \sigma_{ij}^F$$

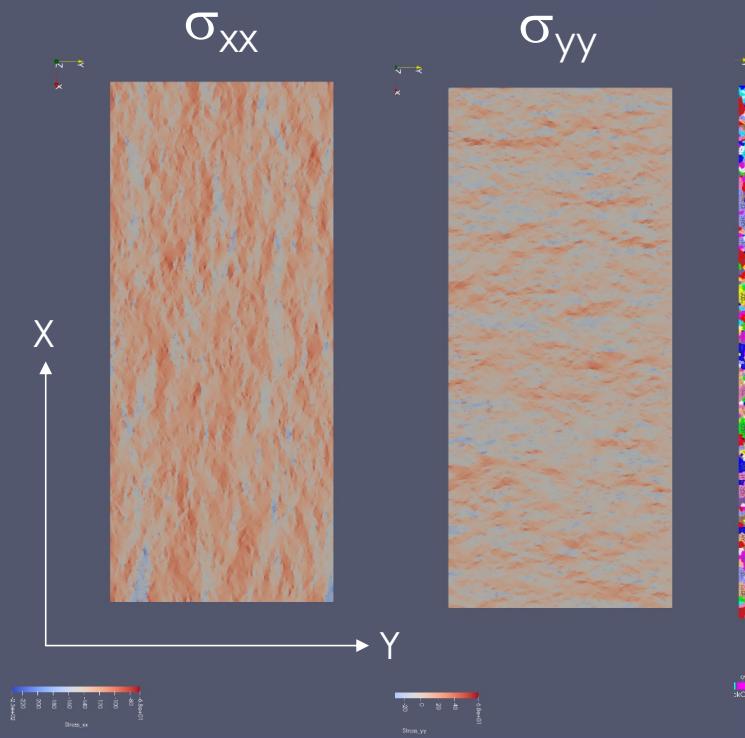


$$\sigma_{ij}^A = f(\sigma_{ij}^F, C_{ij}, \text{grain orientation, CRSS})$$

Grains can have anisotropic properties but there is no spatial information

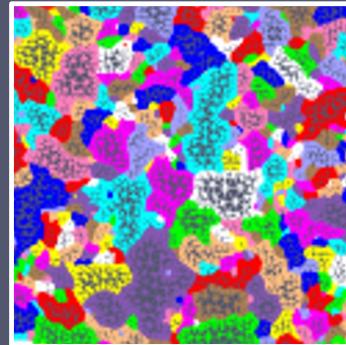
Self organized stress and strain

Finite Element Model



Mesh of
Tigers eye sample

- Mtex2Gmsh
- Elastic only
- Moose Framework

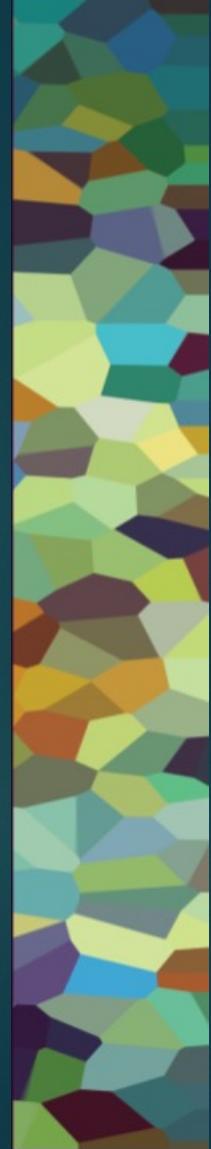


Kidman et al (in prep)

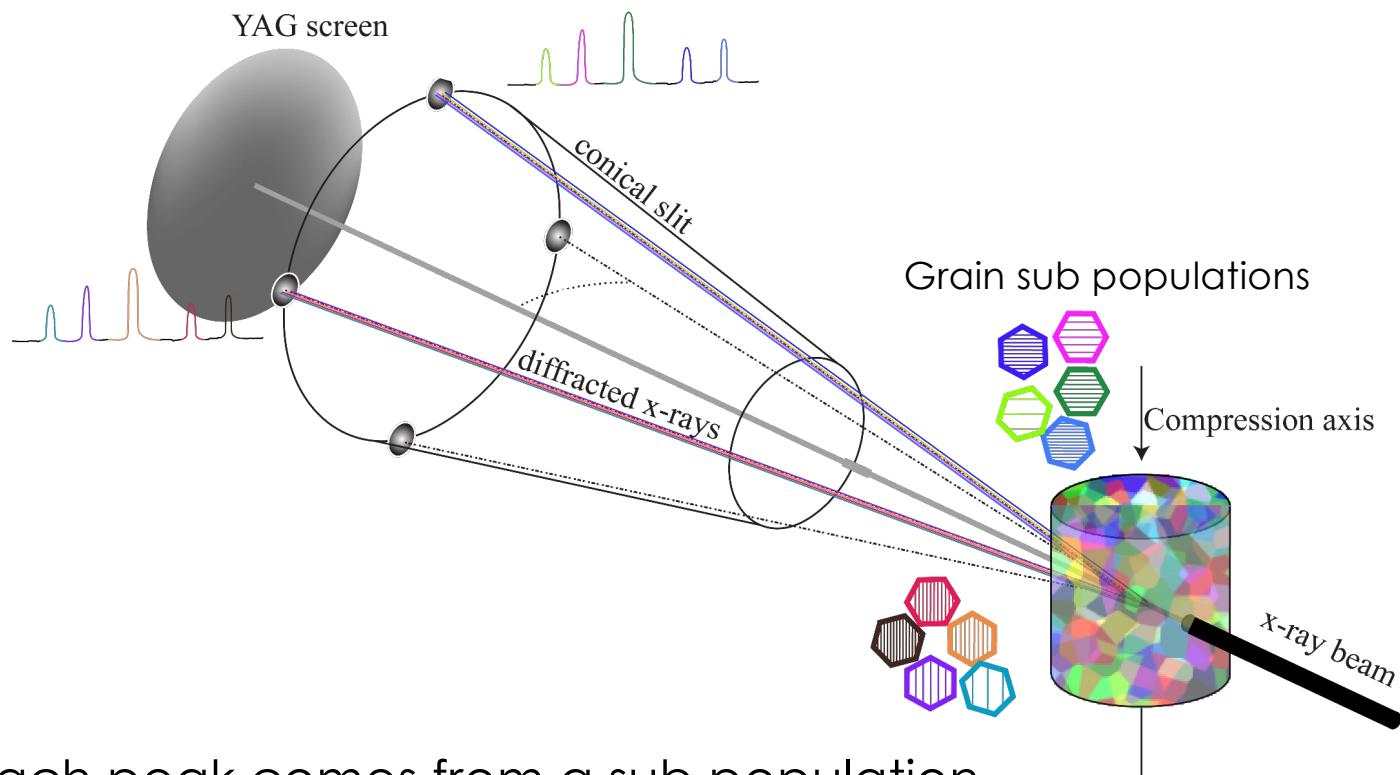
Model can be arbitrarily close
to reality

When to employ which model

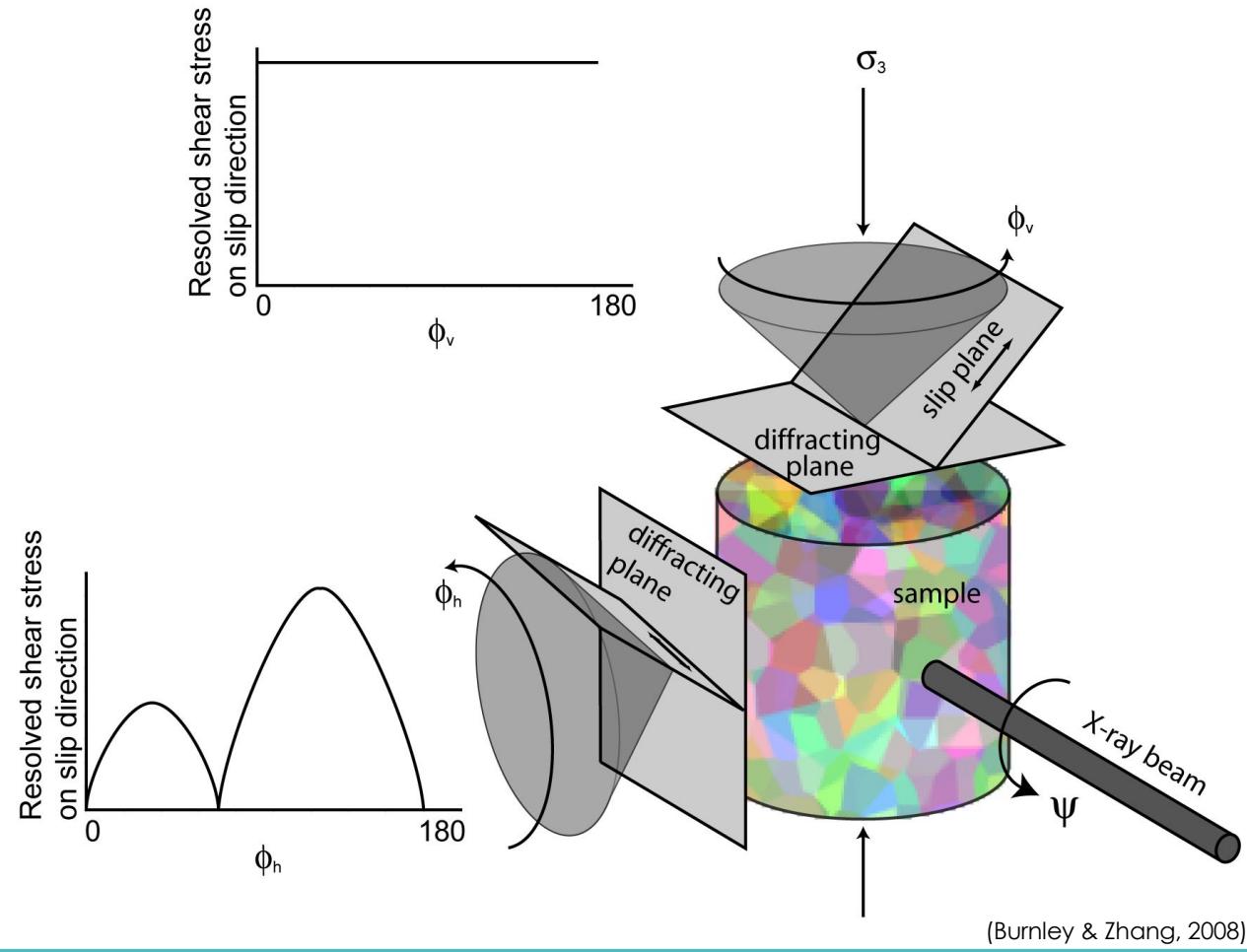
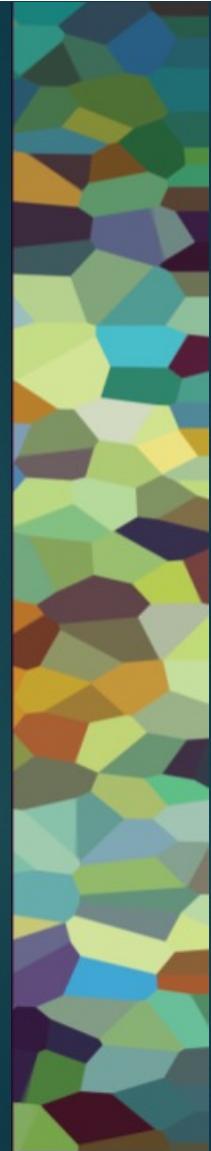
- ▶ Experiment produces a scalar result (e.g. flow strength)
 - ▶ Apply scalar model
- ▶ Experiment produces population averaged information (e.g. powder diffraction)
 - ▶ Apply EPSC, VPSC
- ▶ Experiment produces 2D or 3D spatial information
 - ▶ Apply FEM, DEM etc.



Information from powder diffraction



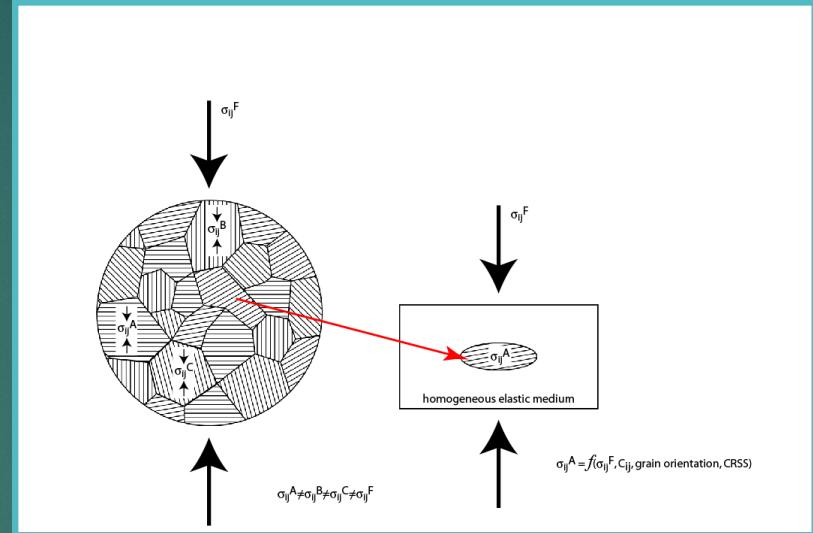
Each sub-population is doing its own thing



Elastic Plastic Self Consistent Models

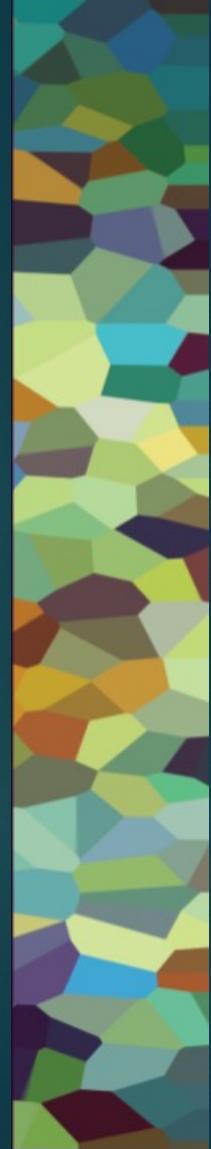
- ▶ Input:
 - ▶ Stress and strain boundary conditions
 - ▶ Orientation information for each crystal in the system
 - ▶ Single crystal elastic constants
 - ▶ Slip systems with CRSS and hardening parameters

$$\tau = \tau_0 + (\tau_1 + \phi_1 \Gamma) [1 - e^{-(\phi_0 \Gamma / \tau_1)}] \quad \begin{matrix} \Gamma = \text{shear strain} \\ \tau = \text{CRSS} \end{matrix}$$



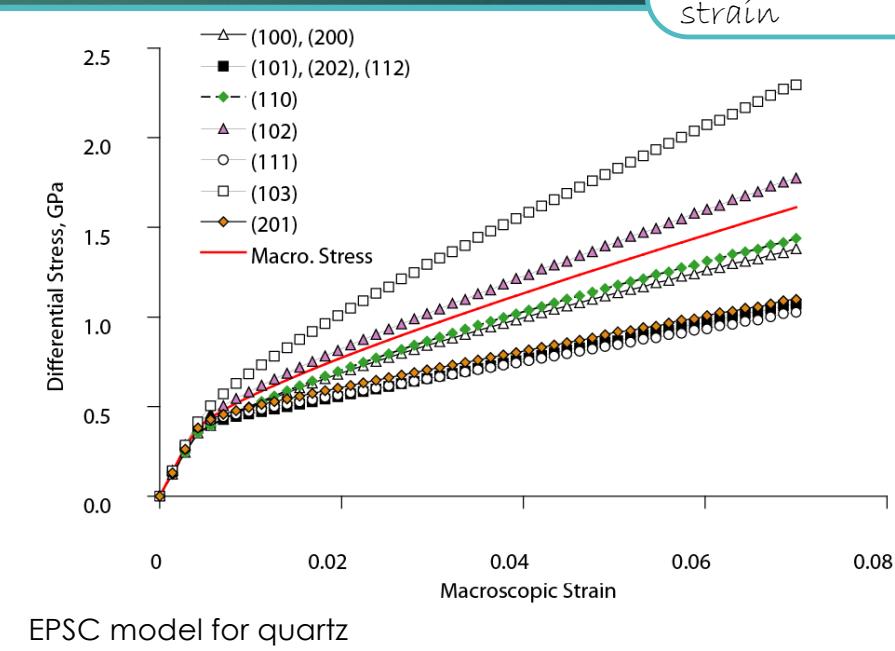
Elastic Plastic Self Consistent Models

- ▶ Increments the chosen boundary condition
- ▶ Calculates stress and strain for each crystal
- ▶ Homogeneous elastic medium is average of all crystals
- ▶ Iterates for each step
- ▶ Output for each step:
 - ▶ Macroscopic stress (or strain)
 - ▶ Elastic and plastic strain for each crystal
- ▶ EPSC code provided by Carlos Tome (LANL)



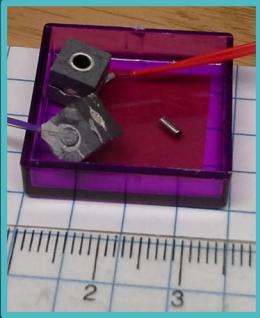
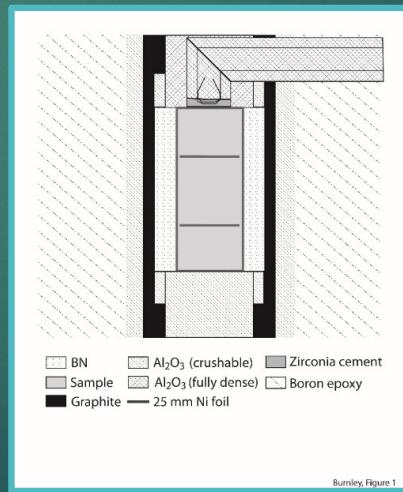
Advantages of self-consistent models for powder diffraction

- ▶ Accounts for non-diffracting grains
- ▶ Uses anisotropic crystalline properties
- ▶ Forces experimentalist to 'listen' to what the sample is 'saying'
 - ▶ Not all grain sub populations are doing the same things
 - ▶ Can't rely on a small number of sub populations to get 'the answer'
 - ▶ Unanticipated deformation mechanisms are revealed



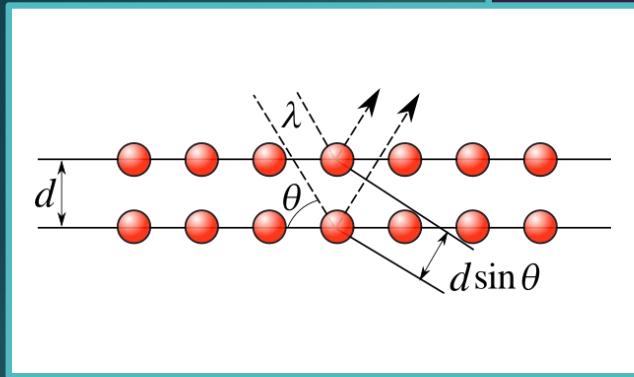
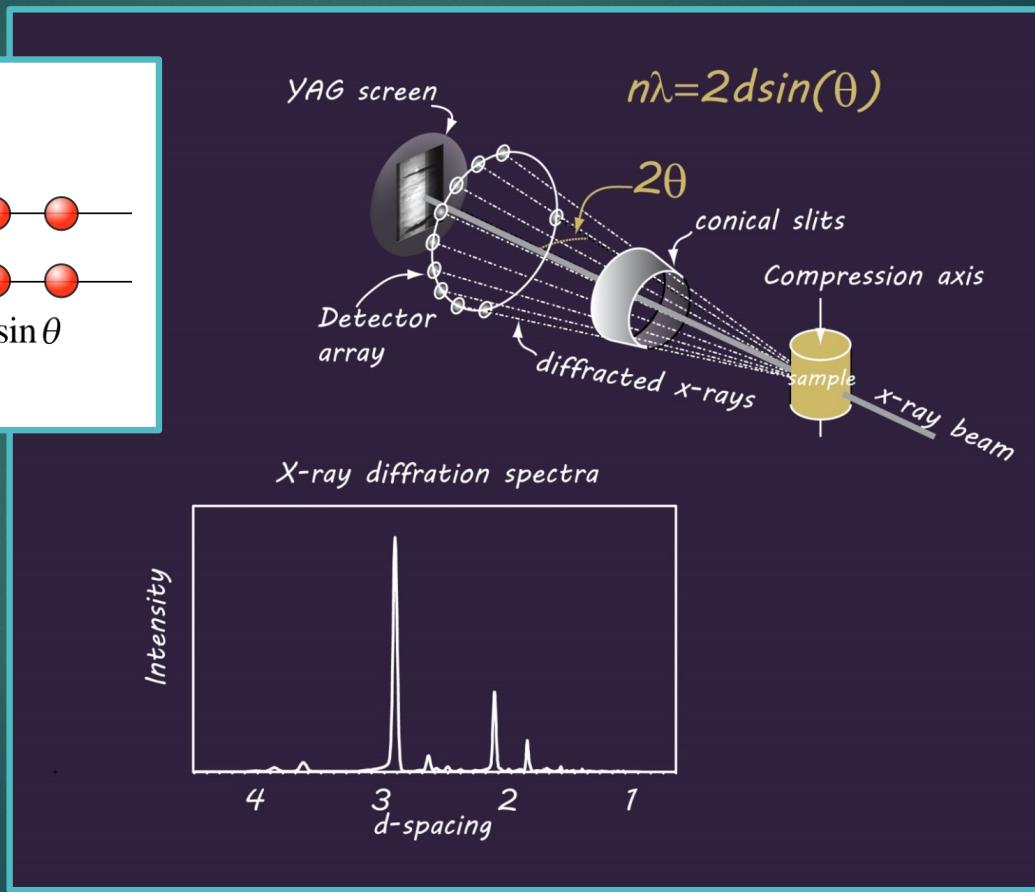
here lattice strain is recast as stress, usually we just plot differential lattice strain

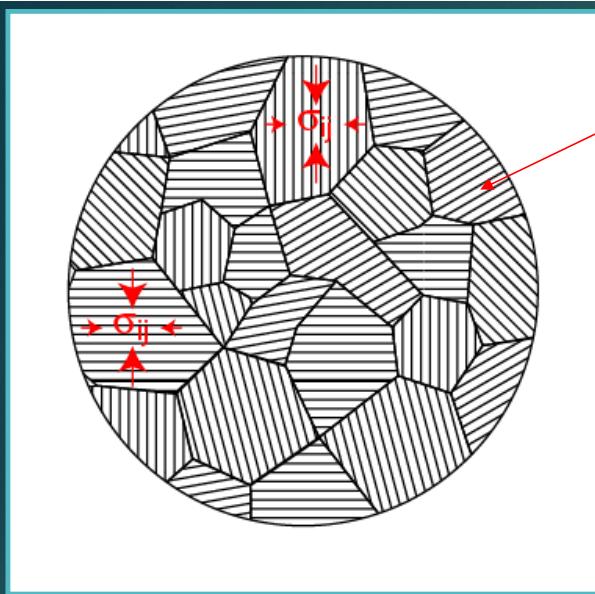
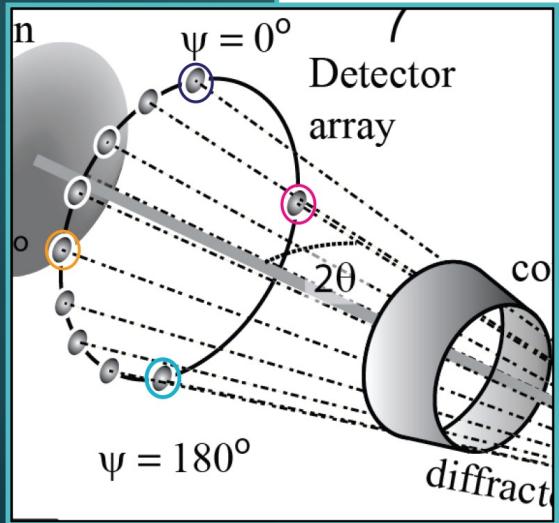
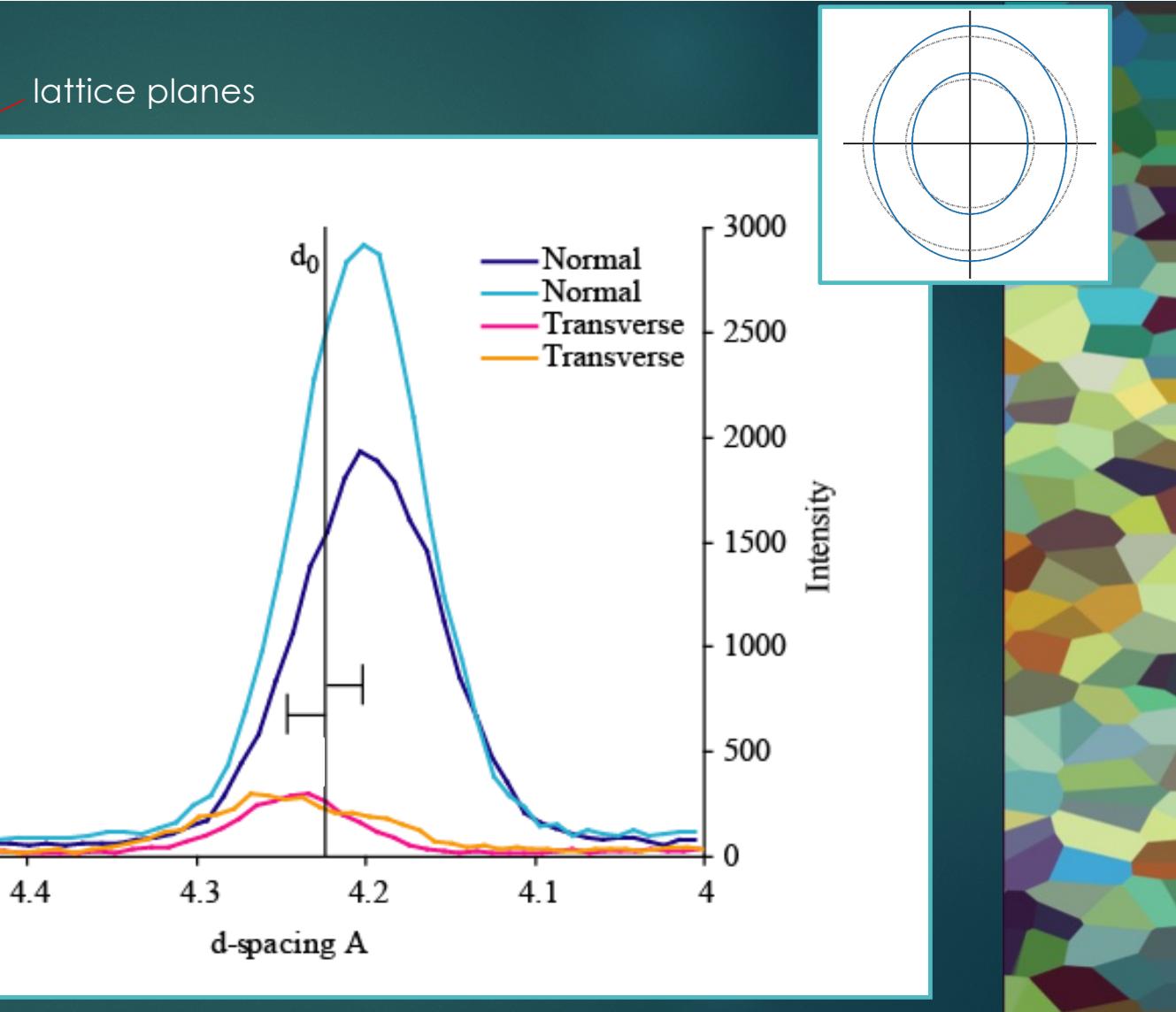
D-DIA experiments



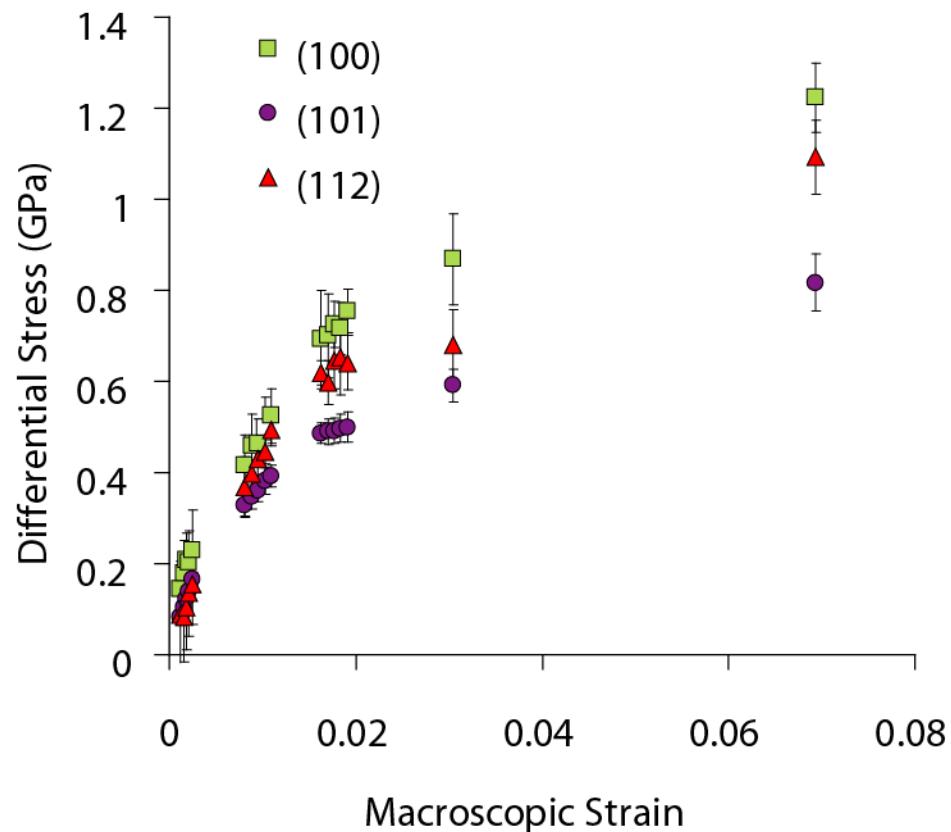
(Wang et. al. 2004)

In-situ Powder Diffraction



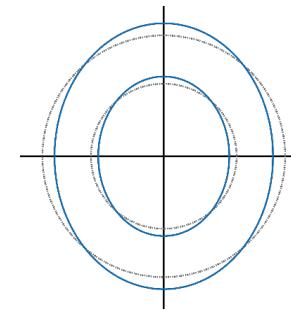


(SiO₂ (α -quartz), 800 C, 2 GPa, 2×10^{-5} /sec)



Stresses calculated using
Singh et al. (1998)
diffraction elastic
constants

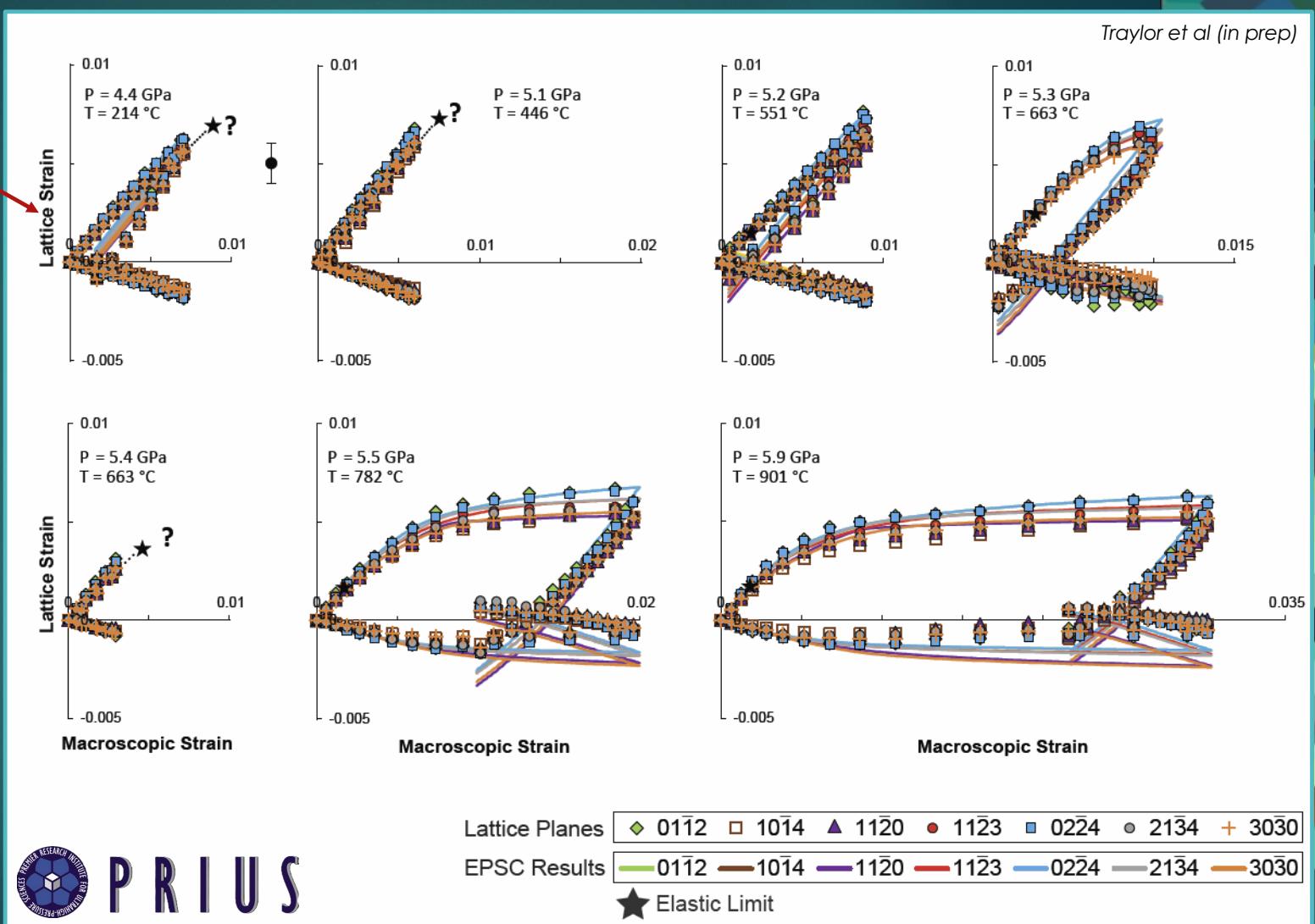
$$\frac{d(hkl) - d_p(hkl)}{d_p(hkl)} = Q(hkl)(1 - 3\cos^2\varphi)$$



(Burnley and Zhang, 2008)

$$\varepsilon^{hkl} = \frac{(d^{hkl} - d_0^{hkl})}{d_0^{hkl}}$$

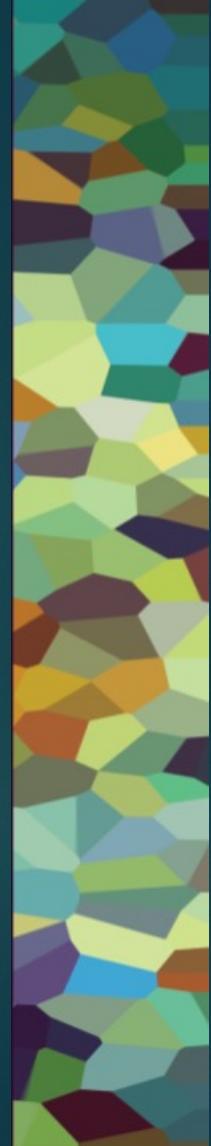
- Polycrystalline alumina sample
- Nano-polycrystalline diamond piston



P R I U S

Applications

- ▶ Investigate deformation mechanisms
 - ▶ Identify missing mechanisms
 - ▶ Kink bands in olivine
 - ▶ Dauphine twinning in quartz
 - ▶ Anelastic deformation at low strain
 - ▶ Determine critical resolved shear stress for slip systems
- ▶ Determine sample strength
- ▶ Measure acoustoelastic effect



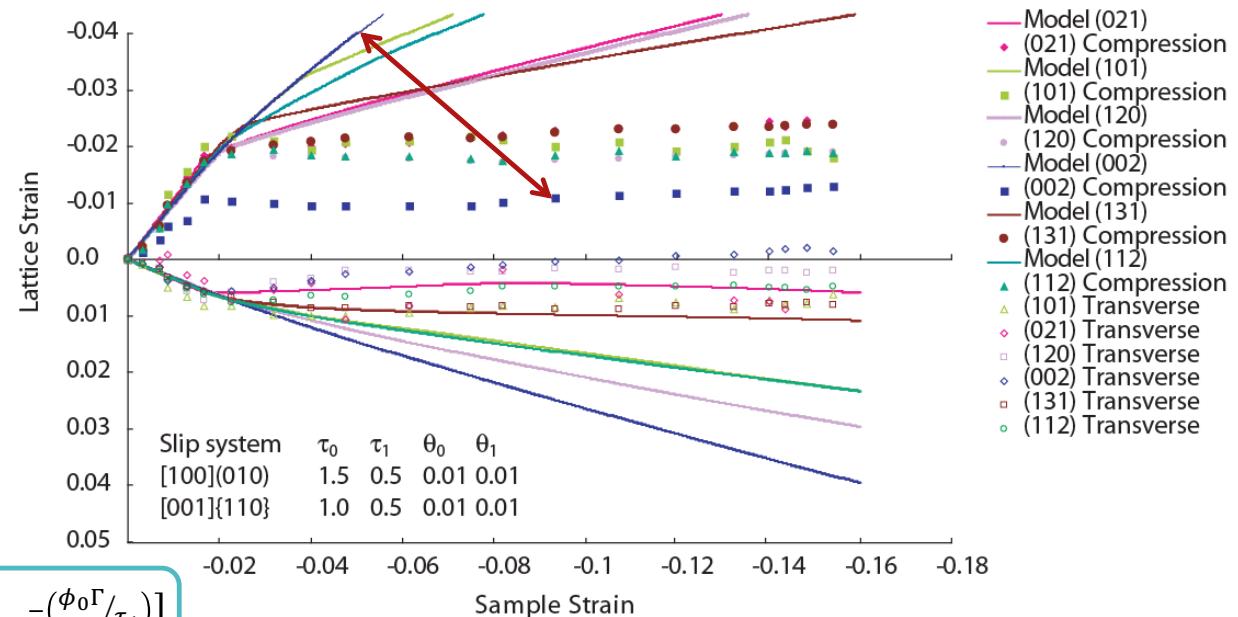
► Applications

- Investigate deformation mechanisms

Olivine slips systems do not have a closed yield surface

- Models work harden
- (002) reflection cannot be matched

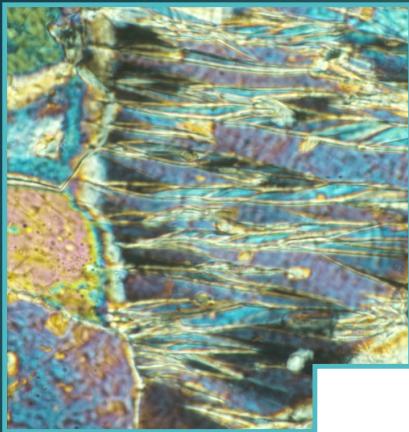
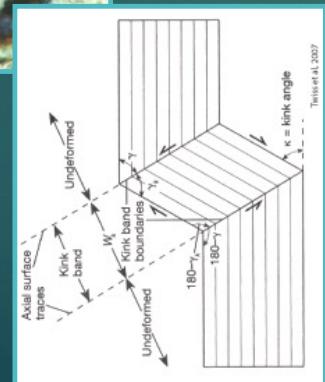
Fayalite, 25 C, 2.5 GPa



$$\tau = \tau_0 + (\tau_1 + \phi_1 \Gamma) [1 - e^{-(\phi_0 \Gamma / \tau_1)}]$$

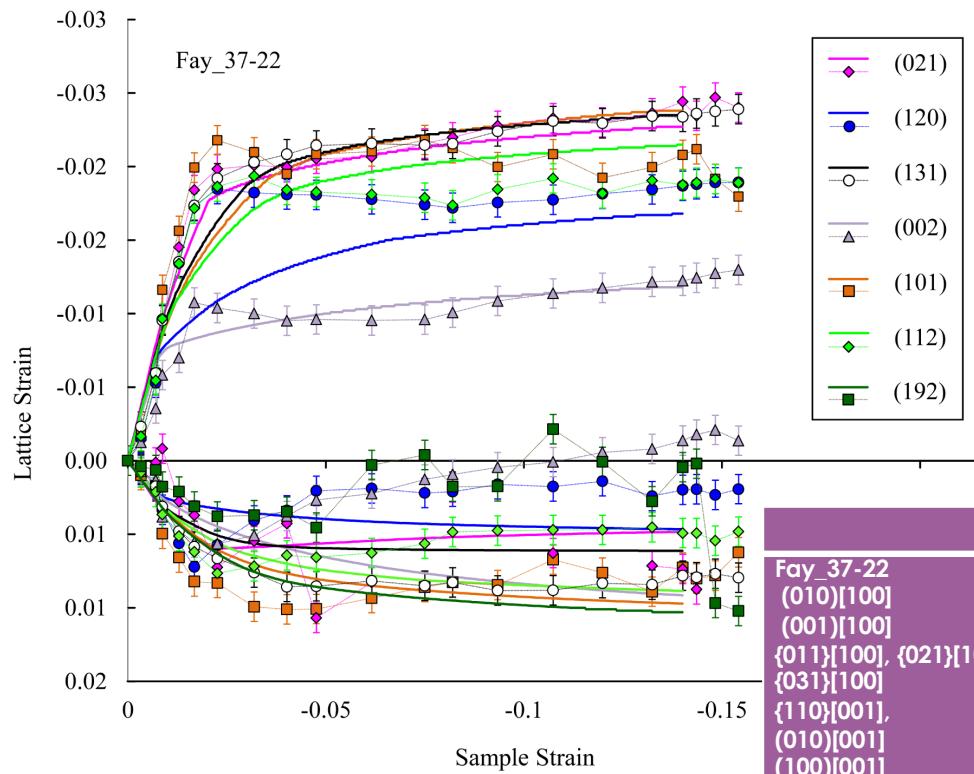
► Applications

- Investigate deformation mechanisms
 - Olivine kink bands



Olivine slips systems do not have a closed yield surface

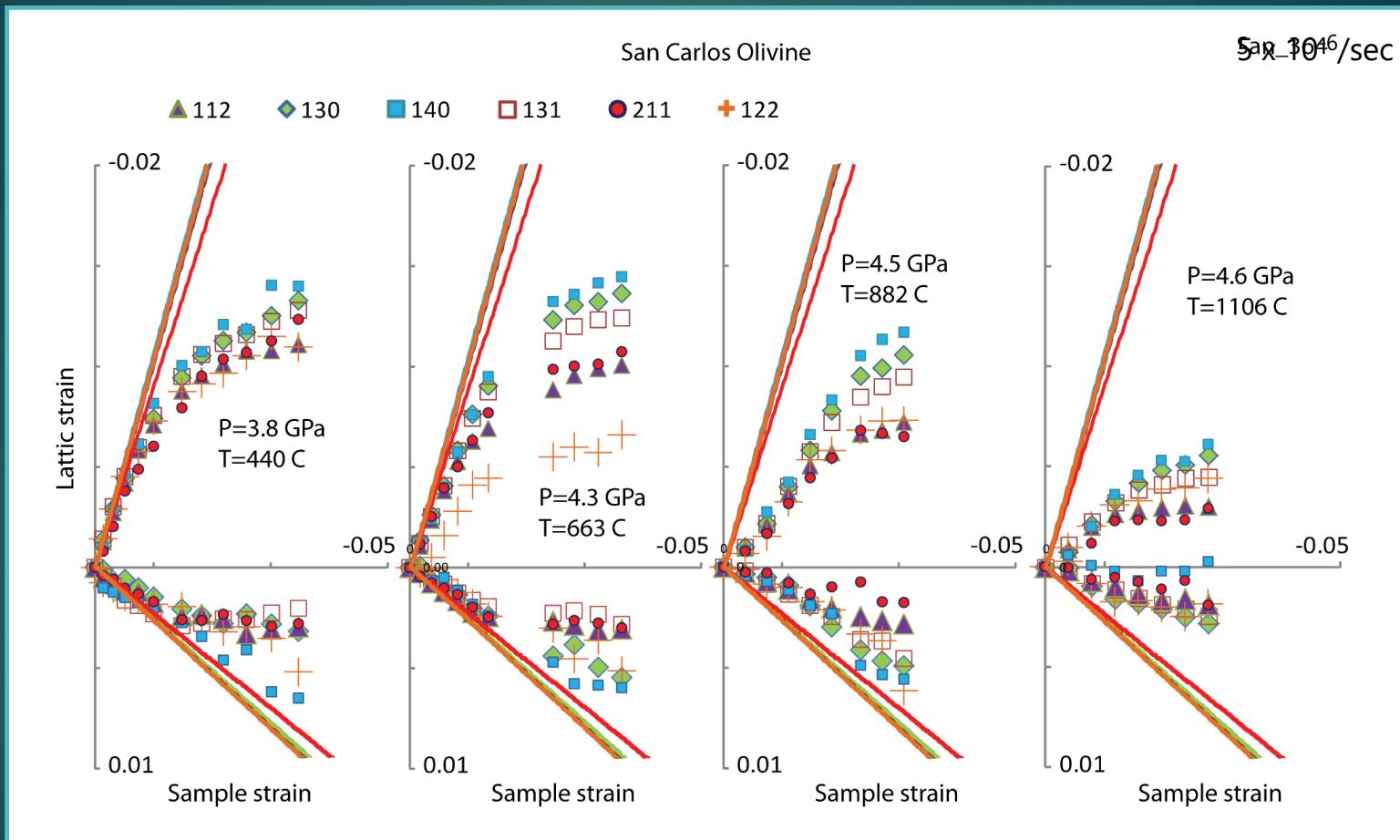
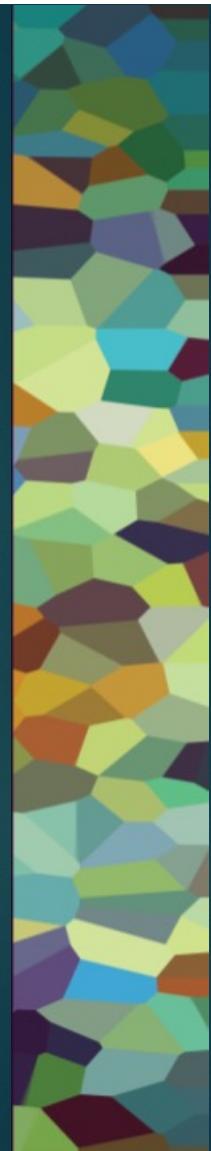
- Models work harden
- (002) reflection cannot be matched

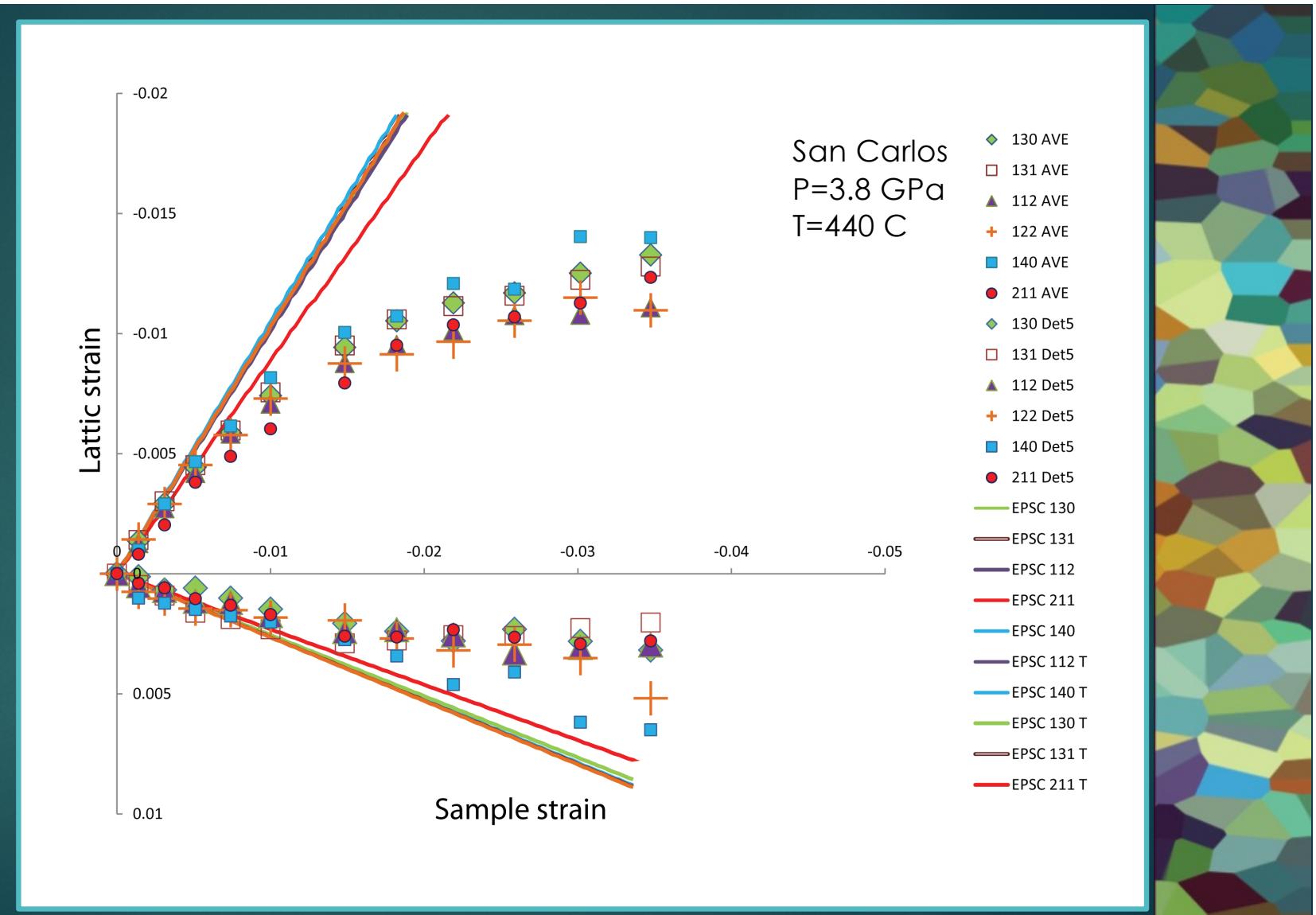


Fayalite, 25 C, 2.5 GPa

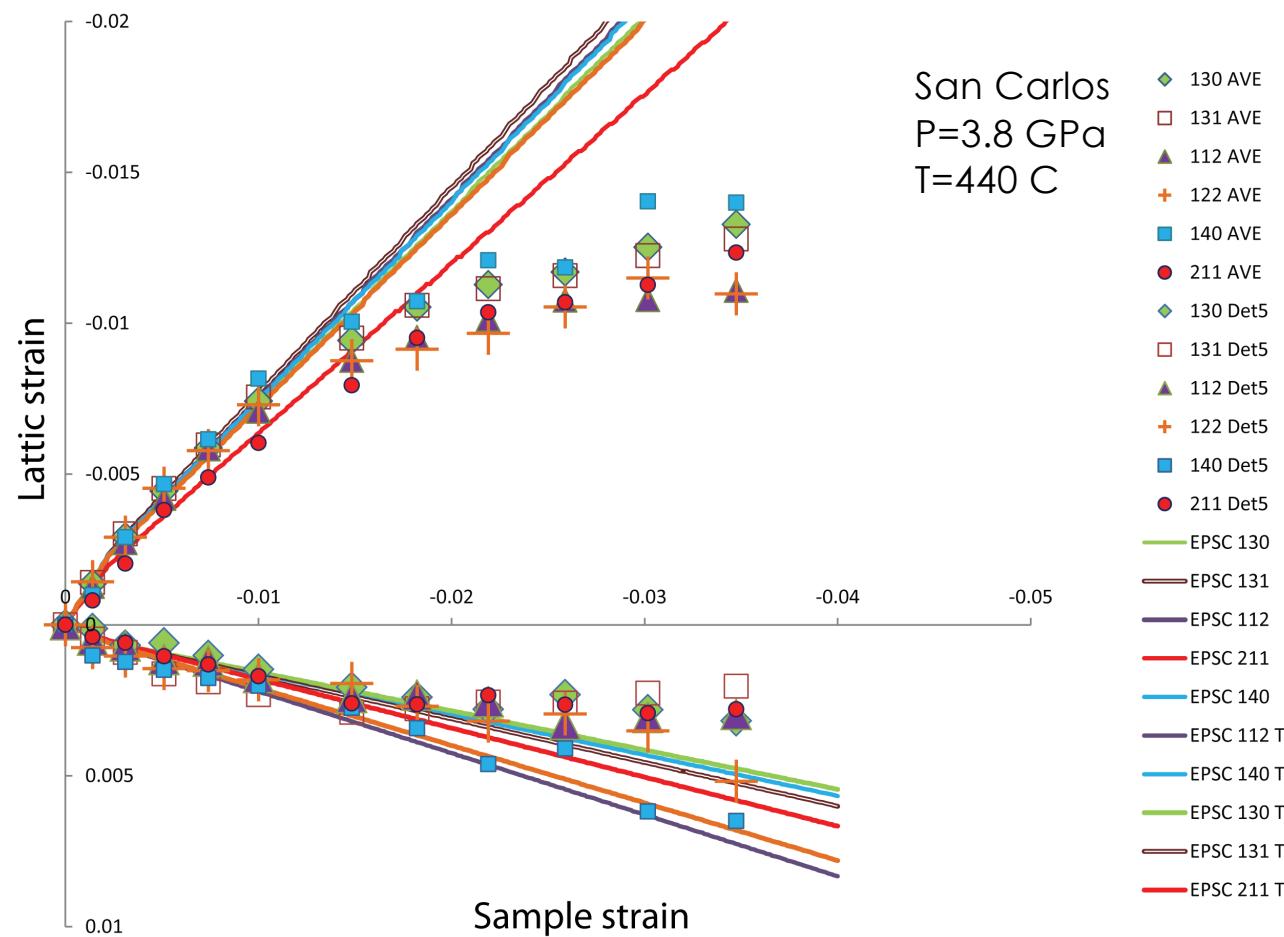
	T_0	T_1	Φ_0	Φ_1
Fay_37-22				
(010)[100]	1.0	0.01	0.2	0.01
(001)[100]	1.7	0.01	0.2	0.01
{011}[100], {021}[100]	1.7	0.01	0.2	0.01
{031}[100]	1.7	0.01	0.2	0.01
{110}[001], {010}[001]	1.0	0.01	0.2	0.01
(100)[001]	∞	0.62	0.01	0.5
Kink systems*				

The trouble with Young's modulus in polycrystalline materials

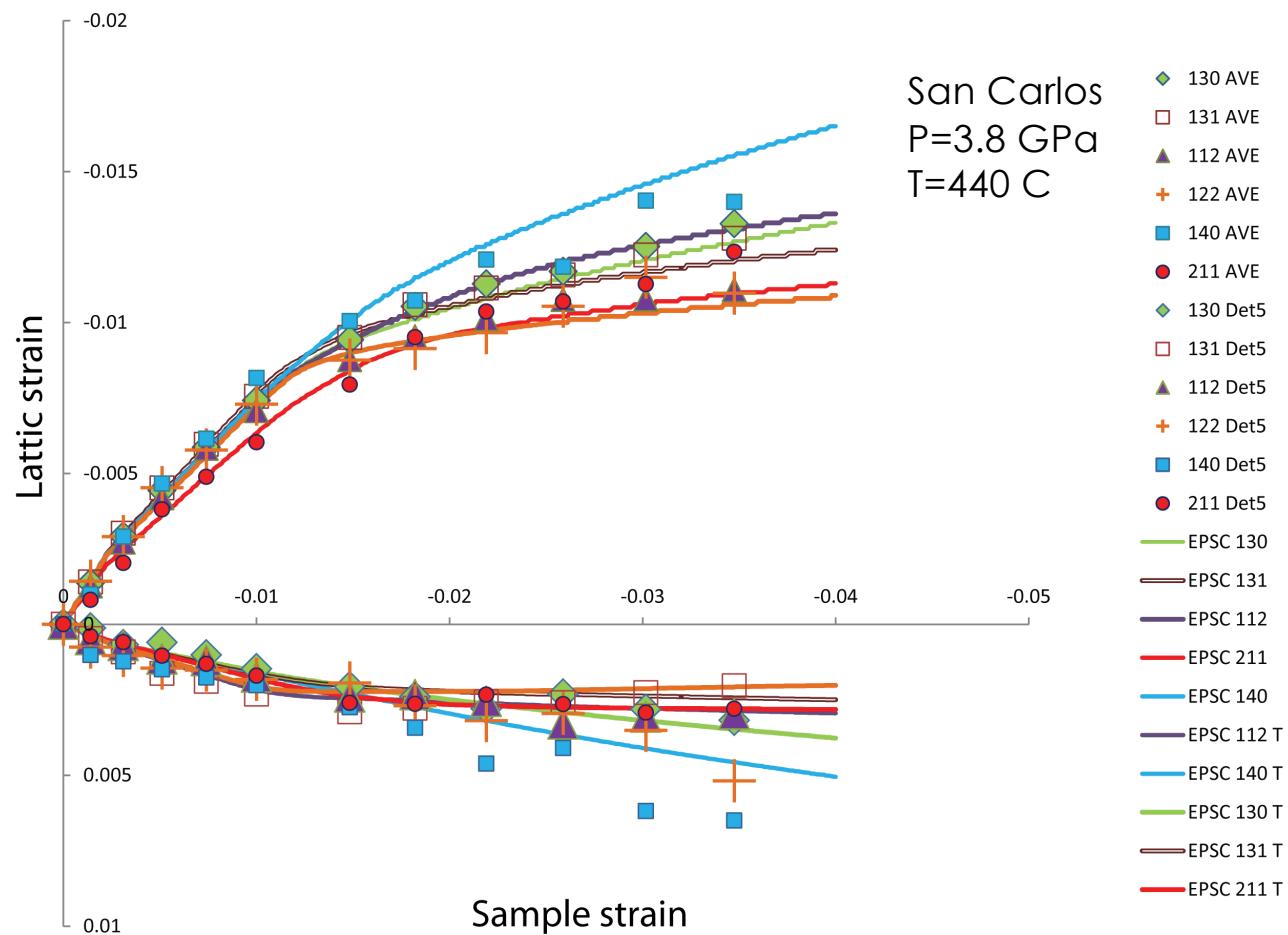




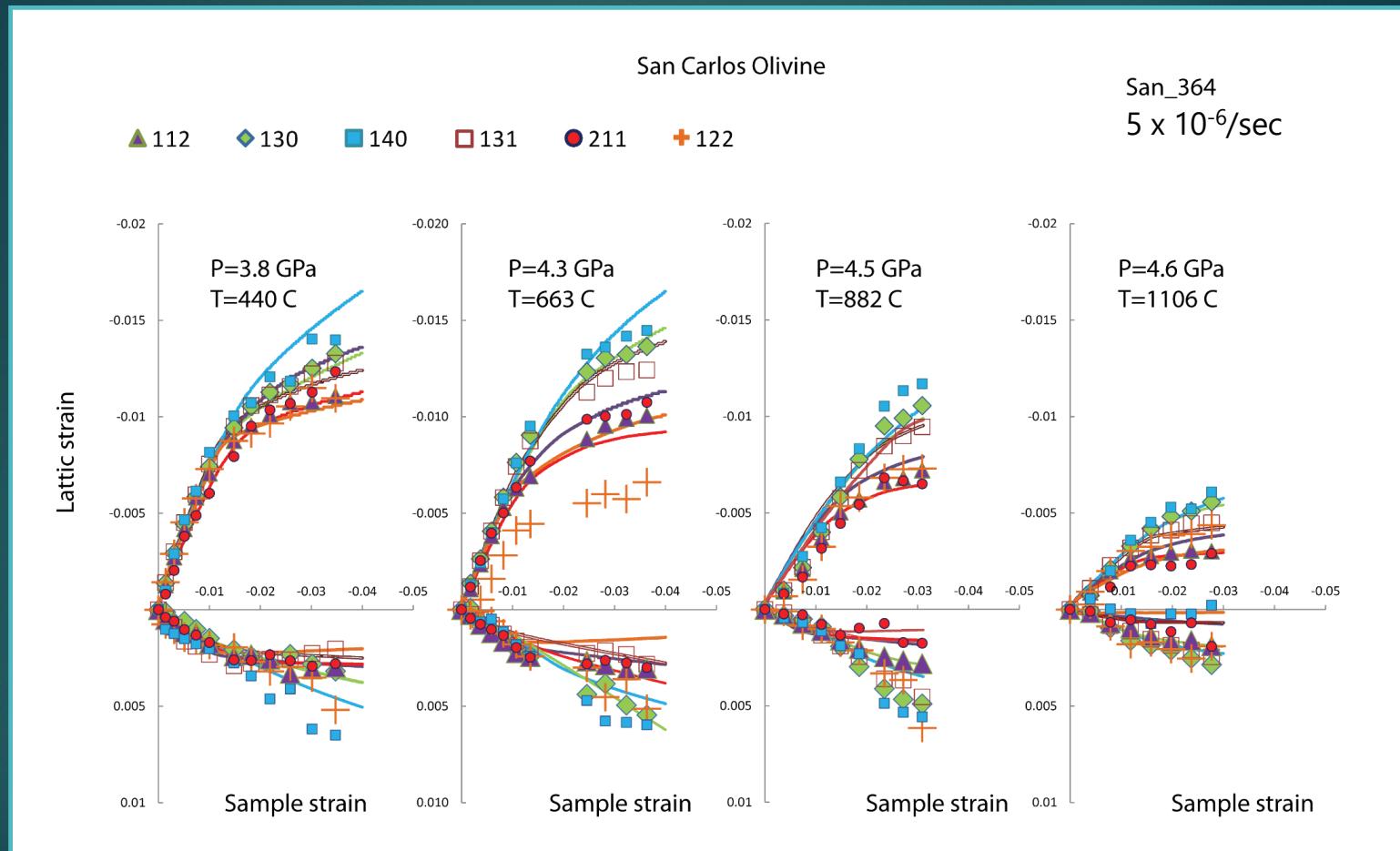
Add "grain boundary" slip system:
 • Schmid factor ~ 0.5 for all
 • Work hardening



Finish up with real
slip systems

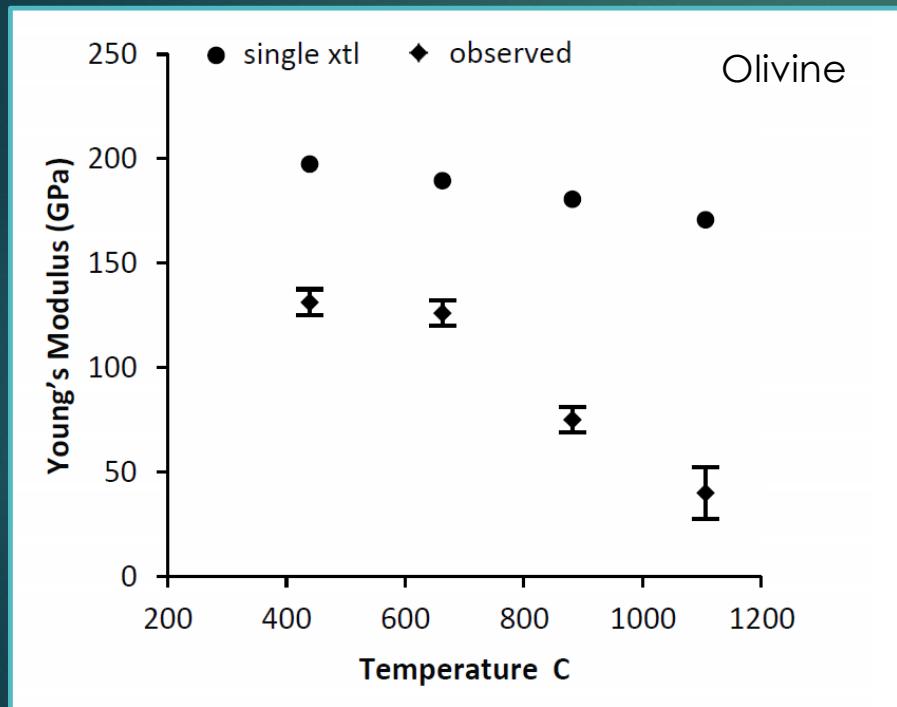


EPSC model fit



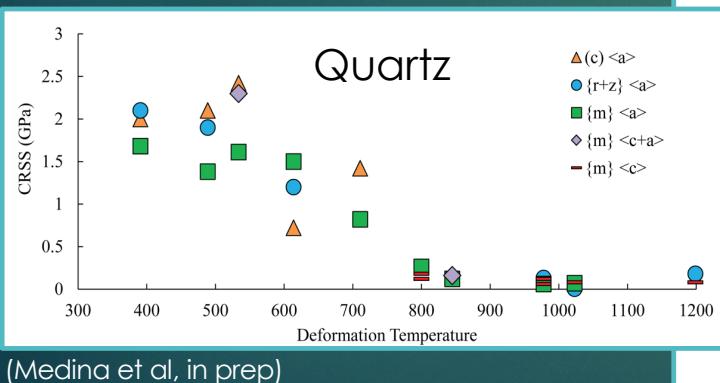
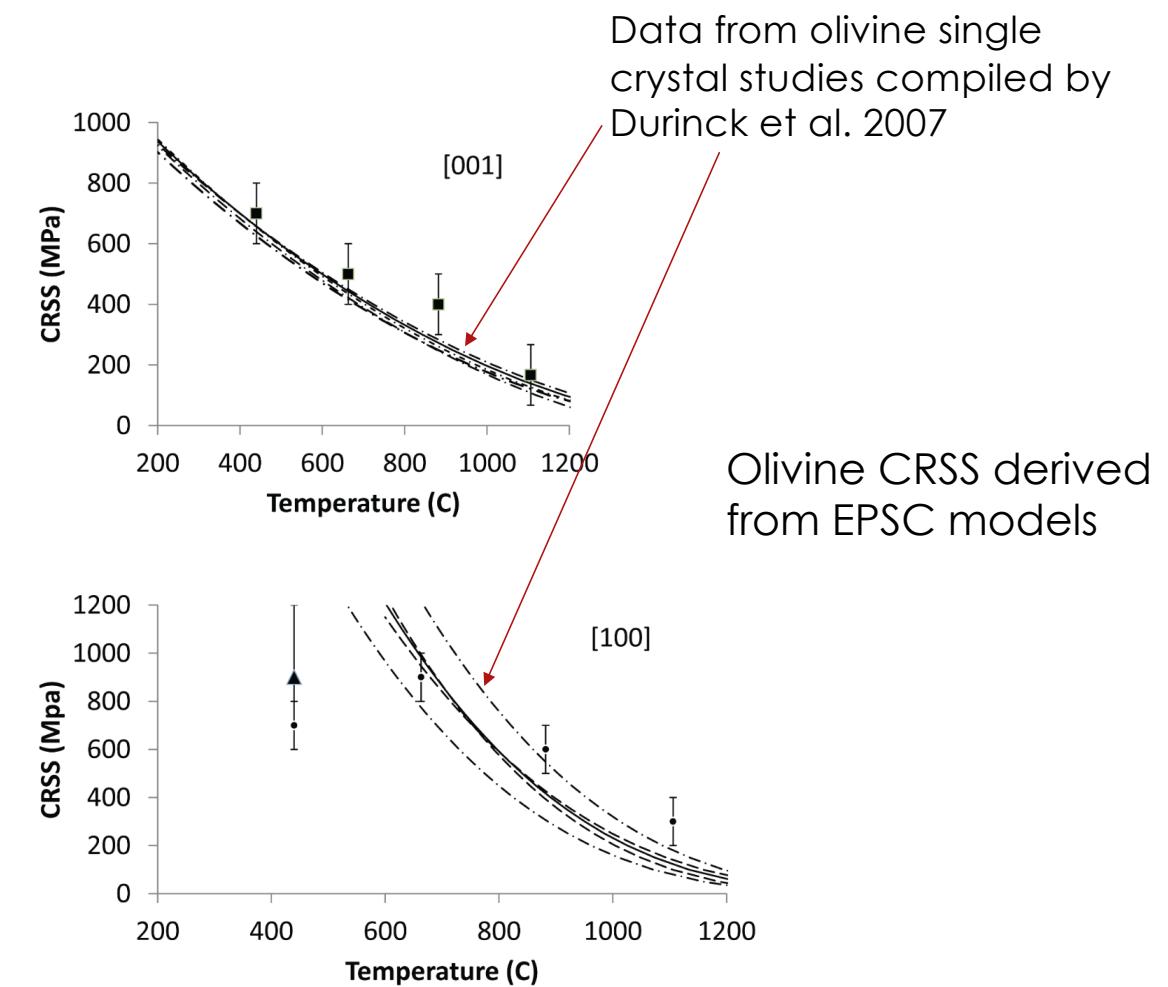
(Burnley & Kaboli, 2019)

Temperature dependence of low strain anelastic behavior



► Applications

- Investigate other deformation mechanisms
- Measure CRSS
 - Depends on uniqueness of slip systems

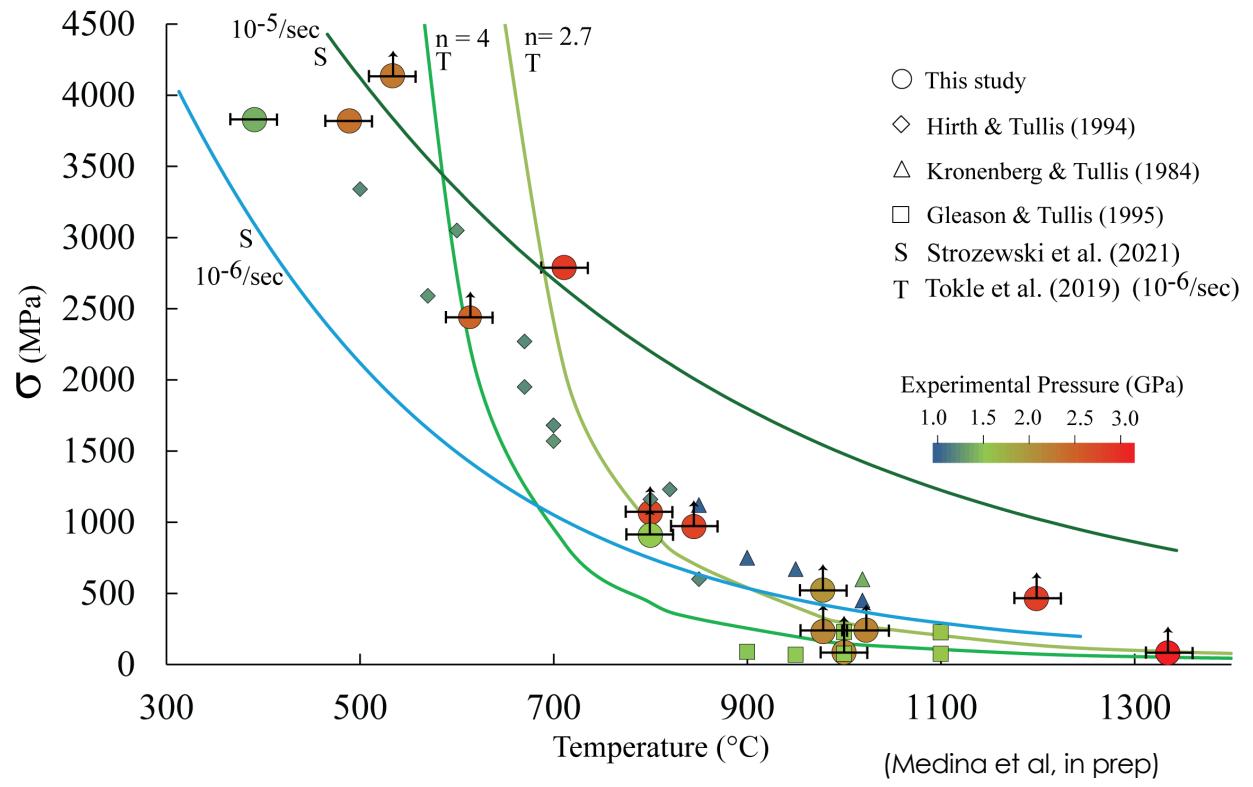


► Applications

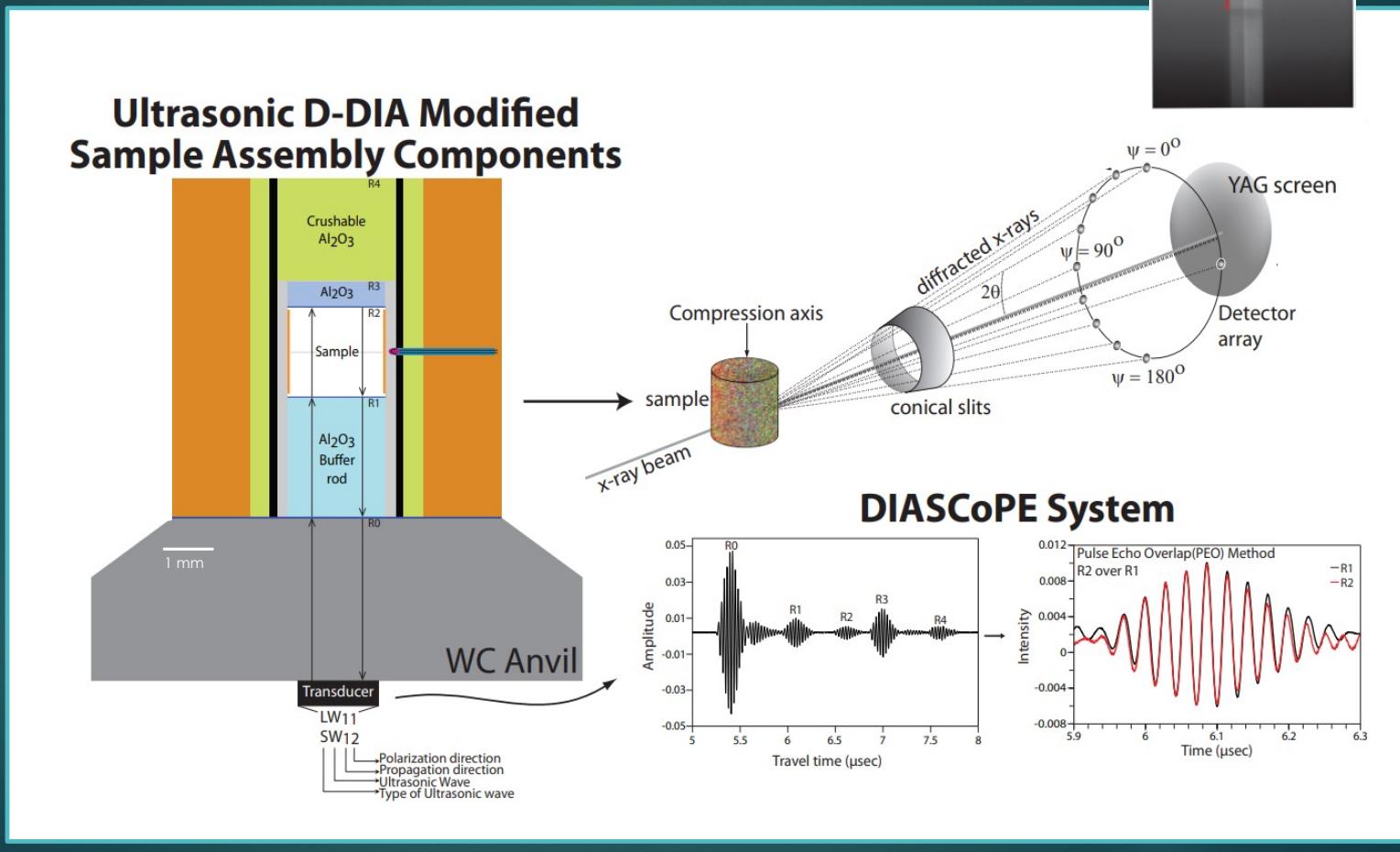
- Investigate other deformation mechanisms
- Measure CRSS
- Measure sample strength

Quartz (novacultite)

$\dot{\epsilon} = 10^{-6} - 10^{-5}/\text{sec}$

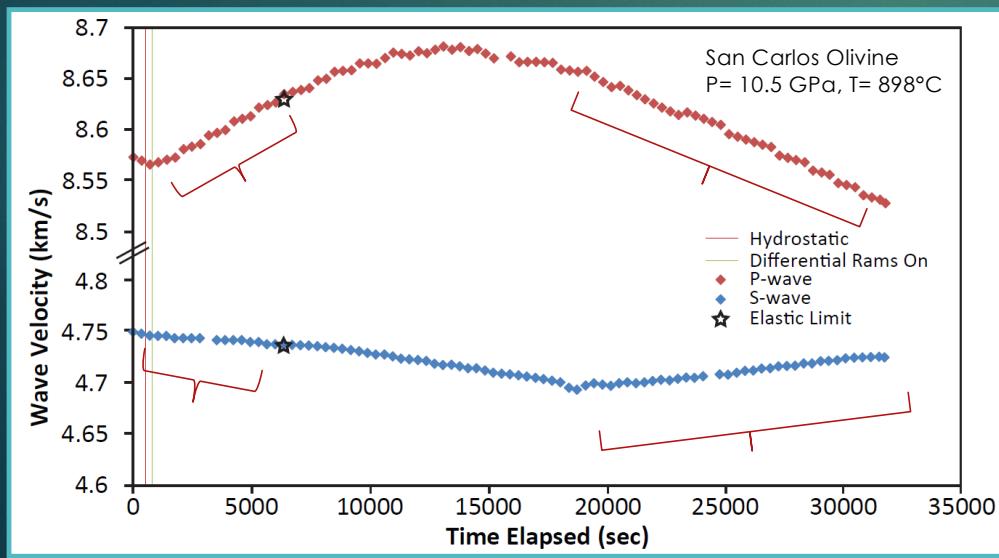


Acoustoelastic Effect

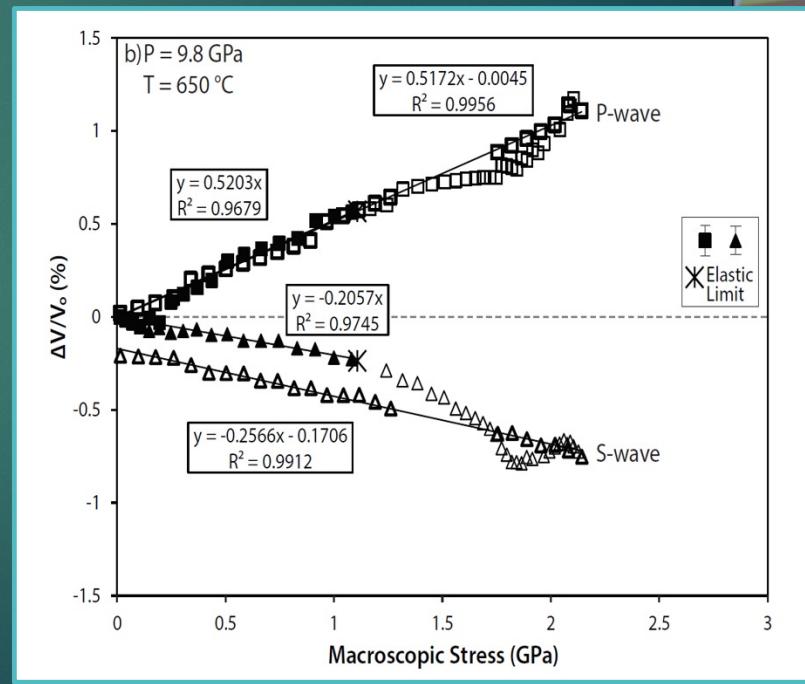


Ultrasound velocity as a function of compressive

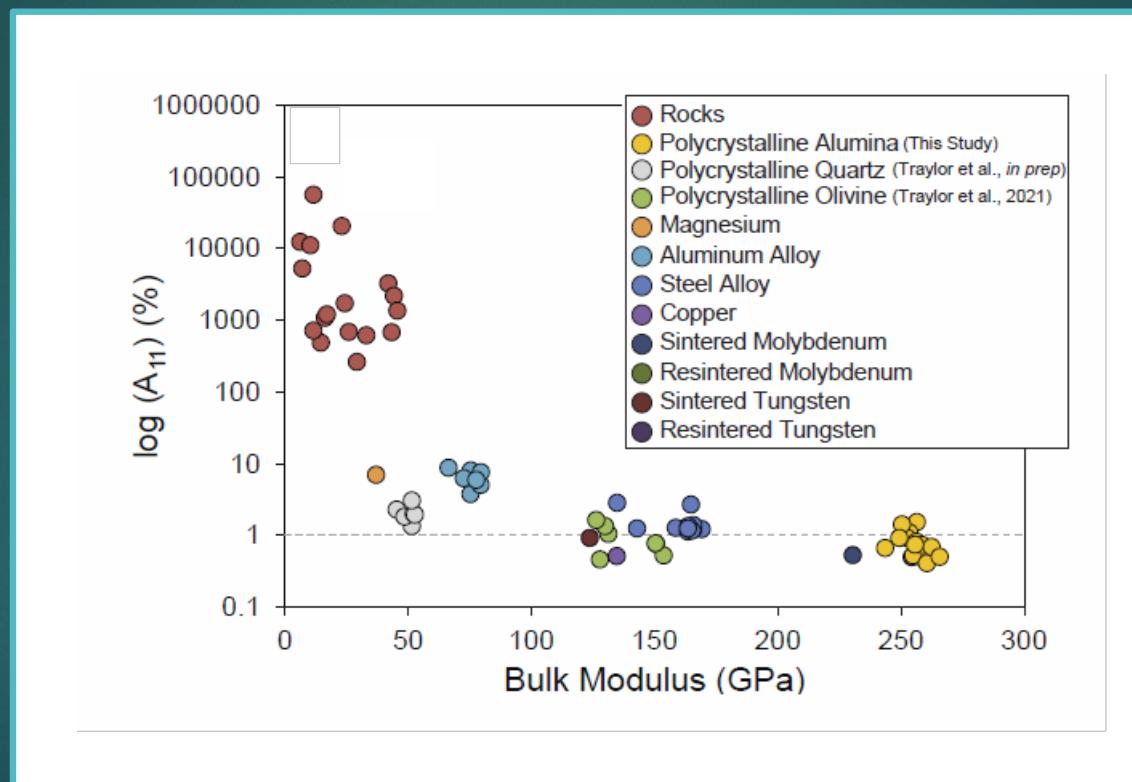
- ▶ P-wave velocities increase with compression
- ▶ S-wave velocities slightly decrease with compression



- ▶ P-wave slope = A_{11}
- ▶ S-wave slope = A_{12}



Dependence of acoustoelastic constant A_{11} on bulk modulus



Conclusions

- ▶ EPSC forward models of powder x-ray data from D-DIA experiments provides a rich source of information about what is going on inside rocks
- ▶ Going forward
 - ▶ EPSC/VPSC codes for more than one phase
 - ▶ Automated model optimization

