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Fluid mediated deformation controls slip behaviors at the

base of the subduction seismogenic zone »
Cailey B. Condit, Eirini Poulaki, Jason Ott, Peter C. Lindquist, Will F. Hoover, Tshering Lama Sherpa B :
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Subduction zones

Volcanoes




Subduction zones

Most devastating volcanic eruptions
Volcanoes



Subduction zones

Most devastating volcanic eruptions
Volcanoes

Largest earthquakes on earth



Subduction zones: Plate boundary processes

Most devastating volcanic eruptions
Volcanoes

Largest earthquakes on earth



Plate interface locus of fluids, chemical & mechanical transformations
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Plate interface locus of fluids, chemical & mechanical transformations
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Plate interface locus of fluids, chemical & mechanical transformations
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Base of the subduction seismogenic zone: EQs and slow slip events

MT images conductors, inferred fluids (Wanamabker et al., 2014)
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Base of the subduction seismogenic zone: EQs and slow slip events

Where deep slow s\ip OCCuUrs... » Geophysical observations — Fluid-rich
environment

» slow Vs, conductive zones in MT, high Vp/Vs ratios
» Tidal trigger of slow slip events
 very small stress perturbations (kPa) result in
several order magnitude increase in slip rates
— most consistent with low differential
stress
* Inferred high pore fluid pressures (Ps)

North American

Juan de Fuca

Deep slow slip events have preceded
large megathrust earthquakes; contribute

> Oceanic crust to the subduction zone slip budget;
Mantle - 4 Occur down-dip* of megathrust
hypocenters but in their slip patches



Strength of the plate interface dependent on fluid behavior and volumes

Fluids can change def. mechanism, mineralogy, and mode of deformation

Shift in mechanism

Microboudinage (diffusive mechanism; n ~2)

Tokle et al., 2023

Dislocation creep (power law rheology;
n ~3-5)

E.q., Glaucophane deformation

11

Ott et al-., 2025




Strength of the plate interface dependent on fluid behavior and volumes

Fluids can change def. mechanism, mineralogy, and mode of deformation

Shift in mechanism New minerals through
Microboudinage (diffusive mechanism; n ~2)  flyid-mediated

metamorphic reactions

Tokle et al., 2023

Dislocation creep (power law rheology;

E.q., Glaucophane deformation

n ~3-35) e
K@;VI e gt ;» 1200 pm}
_ . N, Platt et al., 2018
% ,é@ X : :
5. Transformation-Assisted Creep, Ab
G 2 porphyroblast/clasts reacting to
quartz+ w/ fluid in Pelona schist

Ott et al-., 2025




Strength of the plate interface dependent on fluid behavior and volumes

Fluids can change def. mechanism, mineralogy, and mode of deformation

Shift in mechanism

Microboudinage (diffusive mechanism; n ~2)

Tokle et al., 2023

Dislocation creep (power law rheology;
n ~3-5)

E.q., Glaucophane deformation

poroon |

Ott et al., 2025

New minerals through
fluid-mediated
metamorphic reactions

Platt et al., 2018

Transformation-Assisted Creep, Ab
porphyroblast/clasts reacting to
quartz+ w/ fluid in Pelona schist

30

4

Creep failure envelope
(Condit et al., 2022)
|

No fracture
Fol. development O3,

10 20 30 40 50
o, MPao-n
* Shear vein .
. AT\
formation \m\\%‘\“

. — ey ——— — -

20 30 40
—/ MPa an

Condit & French, 2022
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Pore fluid pressure (0, = 0 - Ps)



the subduction seismogenic zone
What are the phenomena we see in rocks that we need improved:

...Constitutive relations for?

...Dynamic mechanistic understanding of chemical-
mechanical feedbacks?



Observations from the exhumed rock record from the base of
the subduction seismogenic zone

What are the phenomena we see in rocks that we need improved:
..Constitutive relations for?

..Dynamic mechanistic understanding of chemical-
mechanical feedbacks?

Pressure Solution Creep along the plate intertace is not slow slip
Activation of frictional mechanisms with high Pf could be slow slip

Evidence for brittle deformation (seismic slip?) at these deep depths
intimately related to fluid process
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Looking to the WNW
Metasedimentary mélange

Block-in-matrix structure, quartz vein-
rich mess
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Looking to the WNW
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Looking to NW

B

Condit et al., 2025 Geology

Metasedimentary mélange

Block-in-matrix structure, quartz vein-rich exposure

How do these structures form? How do they deform?
and what slip behaviors do they accommodate?




Looking to NW

2

Condit et al., 2025 Geology

Metasedimentary mélange

Block-in-matrix structure, quartz vein-rich exposure

How do these structures form? How do they deform?
and what slip behaviors do they accommodate?




Extensional veins in fold noses Looking to NW

Outer-arc extension fractures precipitate quartz;

Transform into coarse grained quartz vein-mesh networks in

fold noses




Looking to NW

Extension fold nose




Subduction, deformation

fluid infiltration & metamorphism

Deposition near the trench:
~100 Ma; graywackes, sandstones, shales

Rootless F, nose

.

Rootless F, nose...now block <"
Rootless fold noses = strong blocks

Fold Limbs (F;) = weak matrix

Folding, veining, during prograde subduction

Veins strengthen fold noses, progressive shearing
with continued subduction, strain localization in limbs/matri

52-1 - 51

Condit et al., 2025 Geology



Rootless Fold Nose/Block

Rootless F, nose

Rootless F, nose...now block <"
Rootless fold noses = strong blocks

Fold Limbs (F») = weak matrix



Rootless Fold Nose/Block

Veins - Cross-cut early fabric (S1); deform by BLG
and incipient SGR; temps of 300-350°C

Rootless F, nose...now block

ootless fold noses = strong blocks
Fold Limbs (F2) = weak matrix
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Rootless F, nose...now block <"
ootless fold noses = strong blocks

F> Limbs = weak matrix

Rootless Fold Nose/Block
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Veins - Cross-cut early fabric (S1); deform by BLG
and incipient SGR; temps of 300-350°C

Early fabric (S4)- Kinking in sheet silicates; albite
porphyroblasts/clasts with grain size >>50-70 pm
some pressure-solution creep microstructures but
not dominant
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and incipient SGR; temps of 300-350°C

Early fabric (S4)- Kinking in sheet silicates; albite
Rootless F; nose...now block ~m—— porphyroblasts/clasts with grain size >>50-70 pm

Rootless fold noses = strong blocks some pressure-solution creep microstructures but
F> Limbs = weak matrix not dominant




Matrix tabric - pressure-solution creep
microstructures - grain size ~15 pm in both
Qtz - Fluid mediated process

Rootless F, nose...now block <"
Rootless fold noses = strong blocks

F2 LimbS — Weak matl‘iX Condit et al., 2025 Geology



Quartz Mis2Mean EBSD map of matrix fabric
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Matrix fabric - pressure-solution creep

microstructures - grain size ~15 pm in both Ab and
Qtz - Fluid mediated process

Condit et al., 2025 Geology
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Matrix fabric - pressure-solution creep

microstructures - grain size ~15 pm in both Ab and
Qtz - Fluid mediated process

Misorientation Angle

What slip behaviors do these rocks host?

Quartz Mis2Mean EBSD map of matrix fabric

Condit et al., 2025 Geology



 Thin tilm model for pressure | ¢ .1 cize dependent

. _ solution creep of quartz  ; stress exponent = Rheology of the metasediments
Rutter, 1976
AVmCngWG,Of 103

320°C, 1.0 GPa

&€ = <Kay area for improved |
RTd?p ﬂ
S ‘

understanding*

_—

Dislocation creep of quartz Grain size independent

Stress exponent = 4

. 4 Hirth et al., 2001;
£ = AfH200 eXP( o Q/RT) Tokle et al., 2019

102

101

Fold Noses/Blocks
= = = «(Qz Thin Film PSC - 60um

Quart Dislocation Creep

Equivalent Shear Stress (MPa)

1071
102 1018 107 10 10712 1070 10®

Equivalent Strain Rate (s™)

Condit et al., 2025 Geology



 Thin tilm model for pressure | ¢ .1 cize dependent

. solution creep of quartz . stress exponent = 1 Rheology of the metasediments

Rutter, 1976

| AVmCngWG,Of 103

ST T RT P *Key area for improved |
¢ ,

understanding*

_—

Dislocation creep of quartz Grain size independent

Stress exponent = 4

320°C, 1.0 GPa

102

. 4 Hirth et al., 2001;
£ = AfH200 eXP( o Q/RT) Tokle et al., 2019

101

Grain size dependent Fold Noses/Blocks

o = e «»()z Thin Film PSC - 60pm
Wet Ab Diff. Creep - 70 um
Quart Dislocation Creep
Albite Dislocation Creep

Ditfusion Creep of albite

—(

Stress exponent = 1
Offerhaus, 2001

Q

Equivalent Shear Stress (MPa)

& = Aod _3exp — e
RT | *Key area for improved |
' understanding* | 10
: - 1020 10718 10-16 10714 1012 10710 108
Dislocation Creep of feldspar Grain size independent Equivalent Strain Rate (s)

Stress exponent = 3

g = AGBGXP( _ Q/RT) Rybacki & Dresen, 2000

Condit et al., 2025 Geology



Rheology of the metasediments
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Requires 0 <~25 MPa for PSC of matrix to be weaker

than dislocation creep of the quartz veins

Rootless F, nose

Rheology of the metasediments
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Requires 0 <~25 MPa for PSC of matrix to be weaker

than dislocation creep of the quartz veins

With reasonable thicknesses
(200-2000m): tectonic strain rates

Rootless F, nose

10°

102
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Requires 0 >~25 MPa for PSC of matrix to be weaker

than dislocation creep of the quartz veins Rheology ot the metasediments

10°

With reasonable thicknesses
(200-2000m): tectonic strain rates
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Requires 0 >~25 MPa for PSC of matrix to be weaker

than dislocation creep of the quartz veins Rheology ot the metasediments

10°

With reasonable thicknesses
(200-2000m): tectonic strain rates

Slow slip rates of 10-19s-1 or faster

Stresses needed for slow slip strain rates:

Stresses implied
by microstructures

Rootless F, nose

Fold Noses/Blocks

= e )z Thin Film PSC - 60um

Wet Ab Diff. Creep - 70 um
Quart Dislocation Creep
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Requires 0 >~25 MPa for PSC of matrix to be weaker
than dislocation creep of the quartz veins

10°

With reasonable thicknesses
(200-2000m): tectonic strain rates

Slow slip rates of 10-19s-1 or faster

Stresses needed for slow slip strain rates:

Rootless F, nose

Rheology of the metasediments

Stresses implied
by microstructures

Equivalent Shear Stress (MPa)

Fold Noses/Blocks

@ e e «» )z Thin Film PSC - 60pm
Wet Ab Diff. Creep - 70 um
Quart Dislocation Creep
Albite Dislocation Creep

Fold Limbs/Mélange matrix
------ Qz Thin Film PSC - 15 pm

Wet Ab Diff. Creep - 15 um

107
1 0-20 1 0-18 1 0-16 1 0-14 1 0-12

Equivalent Strain Rate (s™)

Rootless F, nose...now block <"
Host tectonic creeping; not slow slip

1070 10®

Condit et al., 2025 Geology



Observations from the exhumed rock record from the base of
the subduction seismogenic zone

What are the phenomena we see in rocks that we need improved:
..Constitutive relations for?

..Dynamic mechanistic understanding of chemical-
mechanical feedbacks?

Pressure Solution Creep along the plate intertace is not slow slip

Activation of frictional mechanisms with high Pf could be slow slip

Evidence for brittle deformation (seismic slip?) at these deep depths
intimately related to fluid process
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Metasomatic mélange, talc, chlorite, and actinolite schists, Serpentinized mantle blocks, metasedimentary rocks

Block-in-matrix structure underlain by lithostratigraphically intact metacherts and metabasalts from the slab
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Metasomatic mélange, talc, chlorite, and actinolite schists, Serpentinized mantle blocks, metasedimentary rocks

Block-in-matrix structure underlain by lithostratigraphically intact metacherts and metabasalts from the slab
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Metasomatic mélange, talc, chlorite, and actinolite schists, Serpentinized mantle blocks, metasedimentary rocks

Block-in-matrix structure underlain by lithostratigraphically intact metacherts and metabasalts from the slab
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Ultramatic-Metasedimentary melange matrix

Ultramafic-pelitic melange
Mechanical and chemical mixing between

e ultramatfic rocks from mantle wedge
* metasedimentary schists

Result: talc and chlorite schists
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Ultramatic-Metasedimentary melange matrix

Ultramafic-pelitic melange
Mechanical and chemical mixing between

e ultramatfic rocks from mantle wedge
* metasedimentary schists

Result: talc and chlorite schists
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Chlorite-actinolite
schist

Actinolitite

Hoover, Condit et al; 2022 GRL
Easthouse, Hoover, 2025 Geology




Ultramatic-Metasedimentary melange matrix

Ultramafic-pelitic melange
Mechanical and chemical mixing between

e ultramatfic rocks from mantle wedge
* metasedimentary schists

Result: talc and chlorite schists

Recent work suggests
metasomatic rocks might host

slow slip;

Frictionally weak and ~rate
strengthening

Actinolitite

Pore fluid pressure (0, = 0 - Ps)

Easthouse, Hoover, 2025 Geology



Ultramatic-Metasedimentary melange matrix

Chlorite-actinolite

Actinolitite
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Talc-Actinolite Schist - Metasomatic with an ultramatic protolith

Photomicrograph
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Talc-Actinolite Schist - Metasomatic with an ultramatic protolith
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Talc-Actinolite Schist - Metasomatic with an ultramatic protolith
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Geodynamic models of stress amplifications in block and matrix structures

Stress Heterogenities Strain Rate Concentrations
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Stress amplifications in melange matrix:
Beall et al., 2019, GRL
- Weak matrix (in our case Talc) can localize strain and deform quickly
- Create force chains + high stress zones in stronger blocks (in our case actinolite)



How weak might the talc be?
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Experimental studies: talc is very weak, frictional
deformation is important at a range of P-T conditions

Horn & Skemer, 2023, Boneh et al., 2023
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How weak might the talc be? Can it host slow earthquakes with high Pt?
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How weak might the talc be? Can it host slow earthquakes with high Pt?
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If Pf are ~lithostatic, talc-schists

could host slow slip events

Near lithostatic
accommodate s
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ow slip with frictional deformation
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Observations from the exhumed rock record from the base of
the subduction seismogenic zone
What are the phenomena we see in rocks that we need improved:

...Constitutive relations for?

...Dynamic mechanistic understanding of chemical-
mechanical feedbacks?

Pressure Solution Creep along the plate intertace is not slow slip

Activation of frictional mechanisms with high Pf could be slow slip

Evidence for brittle deformation (seismic slip?) at these deep depths
intimately related to fluid process



los Island, Greece
Cycladic Blueschist Uni

Mutually crosscutting
relationships between
early exhumation
subduction fabrics and
quartz veins *
pseudotachylyte (7

Fluids appear intimately
related to brittle failure +
seismic slip at ~400 °C,
0.8-1.0 GPa (~25-35 km
depth

Evidence for brittle deformation (seismic slip?) at these deep depths intimately
related to fluid process
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Evidence for brittle deformation (seismic slip?) at these deep depths intimately
related to fluid process
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Observations from the exhumed rock record from the base of
the subduction seismogenic zone
What are the phenomena we see in rocks that we need improved:

...Constitutive relations for?

...Dynamic mechanistic understanding of chemical-
mechanical feedbacks?

Pressure Solution Creep along the plate intertace is not slow slip

Activation of frictional mechanisms with high Pf could be slow slip

Evidence for brittle deformation (seismic slip?) at these deep depths
intimately related to fluid process
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Dislocation to diffusive mechanism shitt in glaucophane
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Matic blueschists (the metamorphosed slab)
accommodate a lot of deformation:

Gluacophane (sodic amphibole) the main strain
accommodating phase.

How does glaucophane deform?

Ott, Condit et al., 2025 Geology



Dislocation to diffusive mechanism shitt in glaucophane
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Weighted Burgers vector analysis shows multiple
slip systems active - Dislocation creep

Ott, Condit et al., 2025 Geology



Dislocation to diffusive mechanism shift in glaucophane
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Griggs type experiments reveal n = 5; tlow law in prep.
Work of Jason Ott (Ott, Condit, & Pec, in prep) Ott, Condit etal., 2025 Geology
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Dislocation to diffusive mechanism shift in glaucophane
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Weighted Burgers vector analysis shows multiple Later microboudinage; new amphibole growth with
slip systems active - Dislocation creep fluid infiltration and chemical potential gradients -

reactive fluids and/or shift in P-T conditions
Griggs type experiments reveal n = 5; tlow law in prep.

Work of Jason Ott (Ott, Condit, & Pec, in prep) Ott, Condit et al., 2025 Geology
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Dislocation to diffusive mechanism shift in glaucophane

Seen experimentally by Tokle et al., 2023; n = 2

- L\Ja-Ca-Amp

\

Later microboudinage; new amphibole growth with
fluid infiltration and chemical potential gradients -
reactive fluids and/or shift in P-T conditions

Seen during early exhumation on Sitnos, Island, GR
(~1.2 GPa; 400°C + H20O & CO2 fluid)

Ott, Condit et al., 2025 Geology




